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Nos ultimos dez anos os calculos de primeiros principios na base da teoria de
funcional da densidade (DFT) na aproximacao da densidade (de spin) local
(LDA) ou de gradiente generalizado (GGA) formaram a ferramenta mais
potente para descricdo microscopica dos sistemas nanoestruturados. Os
primeiros principios se entendem como fixacdo dos parametros de teoria
desde equacdes de mecanica quantica ou da DFT.



Os célculos de Hartree-Fock tornam-se muito laboriosos com aumento de
tamanho de sistema e necessitam um tempo crescente de processador para
chegar & convergéncia. Uma alternativa muito simplificadora dentro da
abordagem autoconsistente foi proposta por W. Kohn e L. Sham (1965),
usando os resultados dos dois teoremas de P. Hohenberg e W. Kohn
(1964).

O primeiro teorema HK diz que o estado fundamental do sistema de varios
electrdes estd completamente definido (tanto energia como fungdo de onda)
pela densidade electronica

n(r) = [y(nf

O segundo teorema HK estabelece que uso da densidade ny(r) na equagao
de Schroedinger minimiza a energia total do sistema.

Isso sugere a ideia principal do meétodo de Kohn-Sham: passar de
tratamento da fungao de onda no espaco de N vectores r; ao tratamento da
densidade n(r), contribuida por todas particulas, mas que depende s6 num
vector r. Este metodo também se conhece como o de funcional da
densidade electronica (density functional theory, DFT).



Essencial da abordagem de Kohn-Sham

Energia e forca totais

A DFT basea-se na representacdo da energia total do sistema dos atomos e electrdes

interactuantes como o funcional E[{R}{y:}] das posicOes atomicas {R} e da
densidade electronica n(r). A ultima esta expressa através dos M orbitais de 1 particula
ocupados w;(r):

Se o funcional total E[{R},{w;}] esta minimizado com respeito aos graus de liberdade
electronicos {y;}, recupera-se a superficie de Born-Oppenheimer:

®[{R}]=min,, , E[{R}, v ]

a que define posicoes {R} dos atomos. A sua derivada define entéo a forca:

_,__oo[fR]

R,

executada sobre o atomo u e assim liga o problema electronica a estrutura e
dinamicas cristalinas.



Total energy difference (eV/Mn-atom)

Mn-Relaxation(%)

Figure 1. Example: structural optimization of Mn and Cu surface atoms 1 a Cu(100)c(2 = 2)Mn surface al-
loy. Right figure: Schematic representation of the substitutional surface alloy film of one monolayer thickness
(@ mdicates the Mn atoms) grown as overlaver on a fee (001) substrate (o). Left figure: Total energy per Mn atom
vs. the buckling relaxation Az, of Mn n relatrve units with respect to the theoretical interlaver spacing of Cu,
de, — 1.76 A The open squares represent the nonmagnetic and the solid diamonds the ferromagnetic results.
The solid lines (for Cu atoms fixed at the ideally termunated positions Azgr, — ) and dashed line (the top Cu
atom 1s always at its optimally relaxed position) are the fitting polyvnomuials. The upper (lower) inset shows the
contour plot of the nonmagnetic (ferromagnetic) total energy with respect to the buckling of Mn and Cu. The
minimum. which determines the optimal structure 1s found in the inner circle. The contour interval 15 1 meV
The energy of the nonmagnetic solution at 0% relaxation was chosen as the origin of the total energy scale (taken

from Ref 34).



A energia total apresenta-se como a soma dos termos consecutivos:

E[{RI i = Banliwid] + Byl{vid] + B llwid] + B {RFAWH + Bigy[{R},

incluindo os termos de energia cinetica dos electrbes sem interaccdo, de Hartree (a
energia classica de Coulomb dos electrdes) e de troca-correlacdo (as correlaches
devidas ao principio de Pauli, ou “lacuna de troca”, e a repulsdo de Coulomb entre
electrdes e a contribuicdo a energia cinética dos electrbes com interac¢do). No ambito
de LDA, o termo de troca-correlacdo apresenta-se como:

E,[] = fdr n()s[n(n)].

Por fim os termos E_, e E; , descrevem respectivamente as interac¢oes dos electroes

com i0es (potencial de tipo 1/r) e entre 0s i0es.



Equacbes de Kohn-Sham
Minimizando a energia total com respeito as func¢des de onda sujeitas a normalizacéo:

Jar lyi(ni2 =1,

chegamos as equacoes de Kohn-Sham que definem o problema de auto-energias & e
auto-funcoes w;(r) de uma particula:

Hnk[n]=&[nlyiln]

com todas grandezas dependentes da densidade electronica n. Conforme a estrutura
da energia total, o Hamiltoniano também torna-se a soma dos termos
correspondentes e 0 problema escreve-se como:

(-I’:O +\7ext +\7H +\7xc i(r): LNV (r)

As formas particulares destes operadores no espaco directo sio:

fo= v, VRl -2
V., =4men(r) ch(r)—gni(r)_[drn(r)gxc(n(r))



O potencial V,,, substitui-se pelo pseudopotencial V  na abordagem
correspondente. Os termos de Hartree e de troca-correlacdo dependem da
densidade electronica local n(r) a que no seu torno define-se pelas solucgoes
(r) e assim define o problema de auto-consisténcia. Este problema resolve-se
pelas iteracOes consecutivas até a densidade convergir a um limite com a

precisao necessaria.

No curso das iteracdes, as posicoes R# dos atomos re-ajustam-se mantendo o
minimo da energia total do sistema, usando as dinamicas moleculares com as
forcas F~.

As formas analiticas dos potenciais de troca-correlacdo incluem certas fungoes
da densidade no ambito de LDA e da densidade com as suas derivadas no
ambito de GGA.

O funcional g [n(r)] inclui a derivada variacional e pode modelar-se como para
gas electronico uniforme (mas ndo livre!) de densidade n, relacionada ao
parametro r, = (3/42n)Y3a, (a, € o raio de Bohr). Por exemplo, D. Ceperley e B.
Alder (1980) definiram este funcional em unidades de Hartree (1 H = 7#?/ma,? ~
27.2 e\VV) como:
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Figure 2. Raght: Typical loop stmucture of a first-principles code based on density functional theory as applied to
solid state materials. Left: Schematic flow-chart for self-consistent density functional calculations e g. as realized
by a FLAPW calculation.



Magnetism

If magnetism occurs, the ground state has a broken symmetry and the ground-state en-
ergy 1s described by functionals which depend on the vector-magnetization density m(r)
as an additional field to the ordinary charge density n(r), discussed so far. An additional
term i pa - By (r) appears in the Kohn-Sham equations Eq. (7)., where up = ;; — is the
Bohr magneton, I3, 1s the magnetic xc-field an electron experiences, and o are the Pauli
spinors. Thus, calculating magnetic systems, one works in a two-dimensional spin-space
and the basis functions 1;, carry an additional spin label &+ = £1. The Hamiltonian is
a 2 x 2 matrix in spin-space and 1s now hermitian and not symmetric. Complex mag-
netic structures lower frequently the symmetry of the problem and more states have to be
calculated or a much larger fraction of the BZ (see Section 2.6) has to be sampled. re-
spectively, pushing the computational effort to the limits of modern supercomputers. In
case of collinear magnetism. e.g. ferro-. ferri-. or antiferromagnetism. o - B, reduces
to o - By.. the Hamiltonian is diagonal in spin space, the magnetization density 2. 1s
then given by spin-up and -down densities. m.(r) = n+(r) — n (r), and the effort of a
magnetic calculation is just twice that of a nonmagnetic one. In general. the magnetic mo-
ment M = [ drm(r) is a vector quantity. and the search of the magnetic structure can be
done dynamically bearing similarities to the dynamical structure optimization combining
molecular dynamics and simulated annealing. Therefore. evervthing said in this chapter on
structural optimization applies to both. the atomic and the magnetic structure. Throughout
the paper, the spin label 1s dropped for convenience. More information on the treatment
of magnetism can be found in the chapter “Non-collinear magnetism: exchange parameter

and Tc” by G. Bihlmayer.




The Eigenvalue Problem

In all-electron methods. eigenvalue problem Eq. (7) 1s solved for all occupied states ¢ but
typically subject to different boundary conditions. As shown schematically in Figure 3 we
distinguish core electrons from valence electrons. The former have eigenenergies which
are at least a couple of Rydbergs below the Fernu energy. the potential they experience
i1s to an excellent approximation spherically symmetric and the wavefunctions have no
overlap to neighboring atoms. The eigenvalue problem of these states 1s solved applying
the boundary conditions of isolated atoms, which is numerically tackled by a shooting
method. Valence electrons in a crystalline solid form electron bands and the eigenvalue
problem is solved subject to the Bloch boundary conditions. The eigenstate 1s classified by
the band index 1 and a three-dimensional Bloch vector k within the first Brillouin zone,
(i € {kr}). Some materials contain chemical elements with states (e.g. 5p states of 4 f
elements or W, p states of early transition metals) intermediate between band and core
states and those are coined semicore states. These are high-lying and extended core states
and particular care has to be taken on their treatment since their treatment as core states
can cause significant errors in total energy, force and phonon calculations. According to
the different treatment of the electrons. we decompose the charge density in the valence,
semicore and core densities

'I?_-I::I‘) = Thyal 'Irr} L ﬂ'hi"lrr) L "-'r?-'t'{J['t‘%'::"_"'}-. {12)

i
5,

the latter being spherically symmetric. The charge densities are calculated according to
Eq. (1). Wavefunctions and energies of core states give access to hyperfine quantities such
as 1somer shifts, hyperfine fields and electric field gradient as well as chemical shifts of
core levels.
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Figure 3. Schematic representation of the energy position of valence, semicore and core electrons in penodic
potential.



There are many possible ways to solve the Kohn-Sham equations for valence electrons.
Frequently, a variational method is chosen by which a wavefunction ¢y, (r) of Bloch vec-
tor k and band index v is sought as a linear combination of basis functions ,, (k, r)

4.""-:-

Y (r) = ) con(k,r) (13)

n—1

satisfying the Bloch boundary conditions. ¢, are the expansion coefficients of the wave-
function (coefficient vector), and /N is the number of basis functions taken into account.
By this expansion, the eigenvalue problem

Hiko(r) = ekptPrn(r) (14)
1s translated into an algebraic eigenvalue problem of dimension N

(H(K) — ex,S(k))eww =0 Vk € BZ (15)



for the coefficient vector ¢, corresponding to the eigenvalues £y,,. The Hamilton
Hmn (k) and overlap matrices S iy (k) are hermitian or real symmetric., depending on
the pomnt symmetry of the atomic structure. If the basis functions are orthonormal. 1.e.
(I 7 G n' ag for example in case of simple planewaves, then the overlap matrix S.

defined as

g™ (k) = / ok, ), (k1) d*r (16)
L4
becomes diagonal., S“‘“J{k} — 5" | and the generalized eigenvalue problem Eq. (15)

becomes of standard type. (! is the volume of the unit cell.

In general. the general eigenvalue problem is reduced to a standard one using the
Cholesky decomposition. It can be shown (e.g. Stoer®'), that any hermitian and positive
definite matrix can be decomposed into a matrix product of a lower triangular matrix with
only positive diagonal elements and its transposed. Clearly. the overlap matrix satisfies
these conditions and can be written S = LL!". Therefore. Eq. (15) becomes

Hc; = ¢;LLY¢;. (17)
multiplying from the left with L' and introducing a unit matrix we finally find
PK-." — £4Xi, {18)

after we have P defined as P = L™'H(L~")!" and x; = L'¢;. Thus. the generalized
eigenvalue problem has been reduced to a simple one. The eigenvectors ¢; can be obtained
by the back-transformation. ¢; = (L'") " !x;.



LS

The choice of the most efficient numerical algorithm to solve Eq. (15) depends on
the number of basis functions NV and the number A of states v taken into account. If
M/N > ~ 0.1, direct numerical diagonalization schemes are employed. for example par-
allelized eigenvalue solvers taken from the ScaLAPACK library package. If M/N <~ 0.1
or if IV 1s too large to fit the eigenvalue problem into the memory of a computer the eigen-
value problem 1s solved iteratively. Any iterative solution of an eigenvalue problem can be
divided into two parts: (1) the determination of the iterative improvement of the state vector

r:E';Jm“ at iteration step rn2 by multiplying the Hamiltonian with the state vector to obtain the
| 1]
update n{{'Jm-l_ :
a,[m41] - qi.1 J'J'l-l.l-'.lfi._-
G, . E HY S kee 15 (19)
1’
and (11) the orthonormalization of the wavefunctions
i [m41] n,[m41] g
r’l{_p 'r*kr’,.' : dy,p-‘ . (20)

TE
(111) Frequently, each iteration step 1s accompanied by a direct sub-space diagonalization of
a dimension proportional to M, on which Hamiltonian His projected. If the multiplication
of H - ¢ can be made fast by expressing the Hamiltonian in terms of dyadic products or
convolutions as in norm-conserving or ultra-soft pseudo-potentials minimizing thereby the
number of multiplications, iterative methods become particular beneficial.
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Figure 4. Test of convergence carried out by the FLAPW method of (absolute) total energy and magnetic moment
as function (1) of the number of the LAPW basis functions (see two left figures) for a 7 layer Fe(100) film and (11)
number of special k-points in the IBZ (see two right figures) for an 11 layer Fe(110) film. The calculations of (1)
were carried out for the rkm-parameters rkm — 7.5, 8.0, 8.5, 9.0, 9.5, 10.0 corresponding to N = 67, 80, 96,

114, 137, 158 basis functions.



The FLAPW Method

The full-potential LAPW method (FLAPW)?*!? combines the choice of the LAPW ba-
sis set with the treatment of the full-potential and charge density without any shape-
approximations in the interstitial region and inside the muffin-tins. This generalization
is achieved by relaxing the constant interstitial potential V7' and the spherical muffin-tin
approximation V;+(r) due to the inclusion of a warped interstitial 3 V% ¢'“" and the
non-spherical terms inside the muffin-tin spheres:

E Ve & interstitial region

V(r) = < (54)

G
Z Vipr (r) Y7, (#) muffin-tin .
L L

This method became possible with the development of a technique for obtaining the
Coulomb potential for a general periodic charge density without shape-approximations
and with the inclusion of the Hamiltonian matrix elements due to the warped interstitial
and non-spherical terms of the potential. The charge density n is represented analogously
to Eq. (54). just exchanging V" by n. Details of the solution of the Poisson equation for an
arbitrarily shaped periodic potential are described in Section 4.6.



Construction of the HamiltonianMatrix

The FLAPW Hamiltonian and overlap matrices consist of two contributions from the two
regions into which space 1s divided.

H=H;+ Hpyr and S =57+ Swur (55)

Both contributions have to be computed separately.

Contribution of the Muffin-Tins

Writing the product of the radial functions « with the spherical harmonics as ¢;, = u;Y7,.
the contribution of the muffin-tin to the Hamiltonian matrix and the overlap matrix is given
by:

&

EL}TE:{k Z/ ﬂ{,ﬁf}!(k)m; (I‘) “{J( :l{_J‘, {I‘) _ET‘H-T{]

MTH _f

3 @S k) (r) + Vi (k)G (x) | dPr (56)

f.’



(The overlap matrix S ‘{}%’ (k) 1s obtained by replacing Hpppo by 1.) It is distinguished
between the atom index p and the atom type index a(pu). In most applications they are
symmetry equivalent atoms in the unit cell. 1.e. some atoms can be mapped onto each
other by space group operations. Clearly, these atoms must possess the same physical
properties. e.g. the potential has to be equal. As a consequence, the Hamiltonian and the
basis functions ¢ (r) do not differ among the atoms of the same type. This fact is exploited
in that the muffin-tin potential of an atom type 1s only stored once for the representative
atom, and the matrices in Eq. (58) are also calculated for the representative only. H MTe 18
the scalar relativistic Hamiltonian operator. It can be split up into two parts, the spherical

Hamiltonian ., » (¢f. Eq. (40)) and the nonspherical contributions to the potential V.

Hyra = HE + V2 (57)

nse

The above integrations contain the following type of matrix elements:
i = / % (v) H ppra g (r)d’r (58)
JMTO

These matrix elements do not depend on the 4“{“}(1() and B“G{ k) coefficients. Thus, they
are independent of the Bloch vector and need to be calculated only once per iteration. The
functions ¢ and gf‘ have been constructed to diagonalize the spherical part H p of the

muffin-tin Hamiltonian F MTe -

H2 ¢ = B¢y and H2 ¢, + = E1¢% + 65. (59)



Multiplying these equations with ¢{, (r) and .;J‘}* (r) respectively and integrating over the
muffin-tins gives

{ |Hu ) Mo — fsjf-!--' {5.,”.mr Ee’- | ':(,J.; ' |-H"Uc he ) MTx — f,}!!’ﬂmm’
{':J?’|H“ Ly )UT“ =0 ; <{-JL:’1’|H“ )UT”‘ - ﬂ!! l',}J'.ram, Ef{”! |” }HT“ : (60}

where the normalization condition for «;* has been used. So. only the expectation values
of the nonspherical part of the pmentlal are left to be determined. Since the potential is
also expanded into a product of radial functions and spherical harmonics,

V(r) ZE}“,,- VY (#), (61)

the corresponding integrals consist of a pmduct of radial integrals and angular integrals
over three spherical harmonics. the so-called Gaunt coetficients:

(8 Joilus) ttuu m mm"’
L, = E IRERGEE™ + 8y 8, B (62)

Hlﬂ'l
v
with
G mt_ Y.* Y Y odQ) and re— upr (r)uf(r)Vie ')-r'zd-r' (63)
Ty ' I L Um! LM U T L’ ty 1”' ' .

as well as similar expressions for 7771 and others. The / matrices contain the radial
integrals. Finally. the Hamiltonian and overlap matrix elements become



EL_}?E: ZZ{H;LIJ (k n-:;,:-a;: _n,{:{k) 4 {h_u{_r ( :l)*f,??;pql,i{,t{;(k)

+(u.‘;,f**' (1)) 4577 0 () + (O ()57 0l S (k) (64)

a; ) pre . (65)

St (k ZZ{H“’ )%l () + (45 (k)" () (i

The Interstitial Contribution

The interstitial contributions to the Hamiltonian and overlap matrix have the following
form:

1 i(G+k)r 5 (G +K)r
HEC (k) = = / e H(G+k) (— g Y {r)) el thEgin, (66)
| _‘.l' ]_ W = "r'Il 1 v
5'}_:-{_:- s f_E IH 1{[_:-—:—[-:]:-{13.1[{: _'_kh-d"i-;r' ) {:6?}

The potential is also expanded into planewaves in the interstitial region:

ViE) = ) Vere 9", (68)
=



Without the existence of the muffin-tin spheres the integration would stretch over the entire
unit cell and the integration would become rather simple. The kinetic energy is diagonal in
momentum space and the potential 1s local. diagonal is real space and of convolution form
in momentum space.

2
i~

HES (k) = 5~

G +k|15{}(;’ +Vic_ g

Tele S
St - 0g g’ -

However, these matrix elements are not as straightforward to calculate as they appear at
first glance. because of the complicated structure of the interstitial region. The integrations
have to be performed only in between the muffin-tins. Therefore. a step function ©(r) has
to be introduced, that cuts out the muffin-tins:
1 interstitial region
Ofr) = i 69
b 0 muffin-tins . (67)



Using the step function the matrix elements can be written as:

HFe (k) = ﬁ/ e GGV (r)0(r)d*r
=8 Jeell
Loyl 2 1 (G- G) 3
+—(G +k) = e " EIro(r)d’r (70)
2 ” Joeell
BEEE q e MGG Irg(r)dy . (71)
=0 Jeell
In momentum space Eq. (70) becomes:
: h?
1 g _ : ' )
ar® (k) = (VO) g gy + %(G- +k)?0c_ g (72)
579 = Bjg_giy (73)

where Q¢ and (VO)g are the Fourier coefficients of ©(r) and V(r)©O(r) respectively.
Apparently these coefficients are needed up to a cutoft of 2(+,,,,,,. The step function can be
Fourier transformed analytically:



ol ls' ?
- Q GRSy

where 7# indicates the position of atom . The Fourier transform of the product of V' (r)
and O(r) is given by a convolution in momentum space:

(VO)e = Z V'O g -
G’

This convolution depends on both. G and G . therefore the numerical effort increases
like (G ax)%. However, (VO)g can be determined more efficiently, using Fast Fourier
Transform (FFT). In Figure 10 it is shown schematically how (V©)g can be obtained
using FFT. Using this scheme the numerical effort increases like (& .“Mj"‘ In( (}'.“Mj"" with
(7 —
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Figure 10. Schematic representation of the calculation of (V' @} . First @(r) is Fourier transformed analytically
with a cutoff of 2G/ .y yielding ©¢. Then O¢ and Vg are fast Fourier transformed and multiplied on a real
space mesh. Fimally, the result (VO }(r) is back-transformed to momentum space.



The FLAPW Method for Specialized Geometries

The Film Geometry for Surfaces and Thin Films

Today. the physics of surfaces and films 1s an field of major interest and investigation.
However. surfaces are difficult to treat, because they break the translational symmetry.
i.e. there is only the 2-dimensional symmetry parallel to the surface left to be used to
reduce the problem, and a semi-infinite problem is left perpendicular to the surface. In
our approach surfaces are approximated by thin films, typically 10—15 atomic layers thick.
Obviously. this approximation. which is called the thin-slab approximation, can only yield
good results if the interaction between the two surfaces of the film 1s week enough. so
that each of them shows the properties of the surfaces of an ideal semi-infinite crystal. In
the case of film calculations space is divided into three distinct regions. the muffin-tins.
the interstitial and the vacuum region (cf. Figure 12). The interstitial region now stretches
from —D /2 to D /2 in z-direction. which is defined to be the direction perpendicular to
the film. The representation of the wavefunctions inside the muffin-tin spheres remains
exactly the same as in the bulk case. Since the periodicity along the z-direction is lost, the

unit cell extends principally from —oc to oo in z-direction. Still the wavefunctions can be
expanded in terms of planewaves. However, the wavevectors perpendicular to the film are
not defined in terms of . but in terms of D. which is chosen larger than D to gain greater
variational freedom. Therefore, the planewaves have the form
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Figure 12. The unit cell in film calculations contain two semi-infinite vacuum regions.



GO with Gy o= (124)
D

where G| and k| are the 2-dimensional wave- and Bloch vectors. r 1s the parallel com-

ponent of r and (& | 1s the wavevector perpendicular to the film. The basis functions in the

vacuuin region are constructed in the same spirit as the functions in the muffin-tins. They

consist of planewaves parallel to the film, and a z-dependent function ug, (k) , ). which

solves the corresponding one-dimensional Schrodinger equation Eq. (125). plus its energy

derivative ug, (k| , 2):

i{[:|| klljt'

':;lj'[}” G {kH 1 rjl — €

L2 02 ] B2
{__F— ~— T ‘[.-'”(,?;f) — Eye + IiI—(G” -I—k”) }-u{;” {k”,z) — (). (125)

2m dz*

I, .. 1s the vacuum energy parameter and V(2 ) 1s the planar averaged part of the vacuum
potential. As in the case of«,; in the muffin-tins. the function @ (kj, 2) is calculated from
a Schrodinger-like equation, which can be obtained by deriving Eq. (125) with respect to
the energy:

he 0 h?
{_QFTH{;E-‘ + Vo(z) — Epae + i1—{G|| + k) }'ﬂ-{}” (ky,2) = ug(k),z) . (126)



The resulting basis functions have the form

PG G (k” ; r) = {“’GIIG; (kH ]‘U.G” {k” . E] ~+ h{;”(:‘;__ {k” J'f}.{;;” {kH y H:l} f_*.r'“";||_:kllﬁ“'ll .

(127)
The coefficients aG,G, {k”) and J)G”(;-,_ (k”J are determined in exactly the same way as it
1s done for the muffin-tins by requiring that the functions are continuous and differentiable
at the vacuum boundary. It should be mentioned. that the vacuum basis functions offer
less variational freedom than the basis set in the interstitial region does. This can be seen
by noting that there are only two functions. ug, and ug, times the corresponding planar
planewave, to be matched to all planewaves of the interstitial region with the same G, . But
there are generally far more than two different (+ | ’s. 1.e the number of basis functions in
the vacuum region is significantly smaller than in the interstitial region. However. this can
be improved rather easily. In Eq. (125) only one energy parameter £, . 1s used. Instead
one can used a whole series of parameters £’ _ to cover an energy region. A possible

1

: : = 2 . .

choice of the energy parameters could be E! . = E{L = E,,, — %G’ * , which leads
correspondingly to + dependent basis functions ug, ¢, (K|, z). For more details see
Ref. 76. In general, however, the present approximation is accurate. the energy spectrum

of the electrons in the vacuum region is small due to the work-function.



Finally we would like to sumimarize the basis set used for thin film calculation with the
FLAPW method:

i H.?'.I;;'[;”—fk”jl' Gz

I g

interstitial
{acya. (kyug, (ky.2)
voc. k1) = ¢ +bg,a, k)i, (k||1EJ}E’-""‘GFkMrll vacuum (128)
Z {;-.{;"JG(k:l-u.;(-r')}’l (F) + b{,‘iG{k]-e}.g{?')YL (f) MT* .
.

This expansion has been suggested by H. Krakauer. M. Posternak and A. J. Freeman®!
Correspondingly. the charge density and potential is expanded in the form:

Zs 'H:;*I’j;fﬂ (r) r € nterstitial region
n(r) =< > ng(z)®IP(r) r € vacuum (129)
(>, nf(r)K,(f) r e MT!

and the Hamiltonian and overlap matrix consists now of an additional term (compare to

Eq. (55)). the vacuum contribution, paying tribute that the space is now partitioned in three
regions

H=H;+ Hy7+ Hy and S =Sr+ Syt +Sy. (130)



The Wire Geometry for Chains,Wires and Tubes

In the FLAPW method for one-dimensional systems*®, the infinite three-dimensional space
1s again partitioned into three regions: the muffin-tin spheres around the atoms. the inter-
stitial region between the atoms and within a cylinder along the axis of the wire (z) of
the radius I?,,.. Outside this cylinder there 1s an infinitely extended vacuum region (VR
in Figure 13). From here on we define the z-axis as the axis of one-dimensional trans-
lational symmetry. As our method is based on the use of LAPW basis functions,!®-31-12
the set of reciprocal vectors G = (G, () is generated in a rectangular box. which re-
flects the translational periodicity of the system in z-direction. The corresponding Bloch
number. k.. lies within the first one-dimensional Brillouin zone. The in-plane reciprocal
lattice vectors G| are generated in an in-plane square lattice with the lattice constant D.

The vacuum region is an infinite region outside the cylinder with the diameter D, < D
(Dyac = 2R 4 ). with the axis along z-direction.



Figure 13. Spatial partitioning of space mto muffin-tin spheres (MT), mnterstitial region (IR) and vacuum region
(VR) (shown in blue color) is shown from aside (left) and from the top (right). The vacuum region is the infinite
region oufside the cylinder with the diameter )y In-plane reciprocal vectors G| are generated in an in-plane

square lattice with the lattice constant D > D ...



As characteristic for the FLAPW method. optimally adjusted basis functions are used
1t three different regions of space. In the interstitial region and in the spheres. the usual
LAPW basis functions are used. In the vacuum the following representation is used:

B s ; & -G : iy G +k:)z
.::;G{k:!r] — Z (ﬂ.:”{kzj -”_E”f- (Jl-%:;H 'f'] + f),f”{kg)-f}_i”n (kza f)) Himfﬁrll z 0, ) (131)

T

The space coordinate r is written in terms of cylindrical coordinates (r, i, z) and the sum-
mation over m goes up to the angular expansion parameter 1m,,,,. which ensures that the
oscillations of the plane-waves on the cylindrical vacuum boundary continue smoothly to
the vacuum side. Since the vacuum potential 1s rather flat, relativistic effects on the basis
functions can safely be 1ignored. and the cylindrically symmetrical part of the vacuum po-
tential Vi (r) and the vacuum energy parameter [<, . determined in every iteration, enter in
solving the radial Schrdodinger equation for every pair (m, (.) giving rise to the vacuum
radial basis wavefunctions u i (k.,r) and their energy derivatives fs}_ff; PR )

The sets of augmentation coefficients @ and b both for the MT spheres and the vacuum
region are determined such that the basis functions and their spatial derivatives are con-
tinuous across the MT spheres, interstitial and vacuum region boundaries. All the basis
functions with reciprocal lattice vector G that fulfill the condition |k. + G| < K, are

included. The corresponding representation of the charge density and potential involves all
vectors G with |G| < Grax- Typically. Guax & 3 - Ky In order to describe multipli-
cation of the interstitial potential with the step function. The vacuum parameter 172, 18
defined in the same manner as /,,,,,, in the sphﬂ:res:14 Mmax =~ K max - Iyac-



