

Espectroscopia de impedância

LUÍS CADILLON COSTA UNIVERSIDADE DE AVEIRO

Estrutura da apresentação

Introdução Modelos de relaxação Circuitos equivalentes Técnicas de medidas Aplicações

Introdução

O que é?

Método de medida de propriedade eléctrica (Z*, Y*, ɛ*, M*) versus frequência.

$$Z^* = Z' - iZ'' \qquad \qquad \mathcal{E}^* = \mathcal{E}' - i\mathcal{E}''$$
$$Y^* = Z^{-1} = Y' + iY'' \qquad \qquad M^* = \mathcal{E}^{-1} = M' + iM''$$

Primeiros passos:

K. Cole, R. Cole, J. Chem. Phys. (1941).

Evolução: Computadores rápidos, largura banda dos LCR.

Introdução

Vantagens:

Medida simples do ponto de vista eléctrico. Fácil automatização. Existência de modelos bem estudados. Correlação com processos físicos e químicos.

Desvantagens:

Ambiguidade dos circuitos equivalentes. Interpretação física dos circuitos equivalentes. Tempo de medida para baixas frequências e com temperatura. Preço dos equipamentos.

Introdução

Como representar os dados?

K. Cole, R. Cole, J. Chem. Phys. (1941).

P. Debye, *Polar molecules*, Chemical Catalog Company, New York, 1929.

Debye

Debye

Não-Debye ou a distribuição de τ :

$$\varepsilon^*(\omega) = \varepsilon_{\infty} + \frac{\varepsilon_s - \varepsilon_{\infty}}{1 + i\omega\tau_D}$$

 $\mathcal{E}^{*}(\omega) = \mathcal{E}_{\infty} + \frac{\mathcal{E}_{s} - \mathcal{E}_{\infty}}{1 + (i \,\omega \tau_{cc})^{1-\alpha}}$

Cole-Cole

Debye

 $\mathcal{E}^{*}(\omega) = \mathcal{E}_{\infty} + \frac{\mathcal{E}_{s} - \mathcal{E}_{\infty}}{\left(1 + i \,\omega \tau_{cd}\right)^{1-\alpha}}$

Cole-Davidson

$$\mathcal{E}^{*}(\omega) = \mathcal{E}_{\infty} + \frac{\mathcal{E}_{s} - \mathcal{E}_{\infty}}{\left(1 + (i \,\omega \tau_{hn})^{\beta}\right)^{\gamma}}$$

Havriliak-Negami

K. Cole, R. Cole, J. Chem. Phys. 9 (1941), 341.
D. Davidson, R. H. Cole, J. Chem. Phys. 19 (1951), 1484.
S. Havriliak, S.Negami, J. Polymer Sci. C14 (1966), 99.

Cole-Davidson

O parâmetro α

T. Kirschen et. al., *Phys. Chem. Chem. Phys.* 5 (2003), 5243. K. Ngai et. al., *Phys. Rev. B* 39 (9) (1989), 6169.

Como escolher o modelo?

$$\varepsilon^{*}(\omega) = \varepsilon_{\infty} + \frac{\varepsilon_{s} - \varepsilon_{\infty}}{1 + i\omega\tau_{D}} \qquad \varepsilon^{*}(\omega) = \varepsilon_{\infty} + \frac{\varepsilon_{s} - \varepsilon_{\infty}}{1 + (i\omega\tau_{cc})^{1-\alpha}} \qquad \varepsilon^{*}(\omega) = \varepsilon_{\infty} + \frac{\varepsilon_{s} - \varepsilon_{\infty}}{(1 + i\omega\tau_{cd})^{1-\alpha}}$$

lim CD ($\omega \rightarrow 0$)=Debye

C. Bottcher, P. Bordewijk, *Theory of electric polarization*, Elsevier, Amsterdan, 1996.

Tempo versus frequência

R. Kohlrausch, Ann. Physik 91 (1854) 56; F. Alvarez et. Al., Phys. Rev B 44 (1991) 7306.

Circuitos equivalentes

Um circuito simples

A. Jonscher, Dielectric relaxation in solids, Chelsea Dielectric Press, London, 1983.

Circuitos equivalentes

Ambiguidade nos circuitos

Como escolher?

E. Barsoukov, J. Macdonald, Impedance Spectroscopy, J. Wiley Sons, New Jersey, 2005.

Lock-in

LCR

Zin>>Z,R

I_Z=I_R

Microondas

$\mathsf{TE}_{\mathsf{mnp}}$

TE_{10p}

E_t=0 é uma condição fronteira!

Microondas

TE₂₀

Microondas

$$\varepsilon = K \frac{\Delta f}{f_0} \frac{V}{v} + 1 \qquad \qquad \varepsilon = \frac{K}{2} \Delta \left(\frac{1}{Q}\right) \frac{V}{v}$$

- Determinar K Usar PTFE
- Pequena perturbação!
- Modo TE_{10p}, p impar

•Cimento + PPy: Mistura 300 rpm, 3 min

•PPy dedopado e lavado

•D~~200 nm

•Inicial w/c = 0.4

PPy (SEM)

Espectroscopia de impedância

 $Z^* = f(\omega)$, durante a presa 1Hz < f < 5MHz

 δ = f (t), após 2 meses de presa

F. Henry et. al., Mater. Sci. For. (submetido).

Conclusão

Espectroscopia de Impedância permite:

Seguir a presa do cimento. Observar a alteração do início da presa devido à introdução de PPy. Observar a diminuição de porosidade devido à introdução de PPy.

Os resultados foram correlacionados com medidas de ângulo de contacto e Mecânicas.

Efectuaram-se testes em 4x4x16 (industria).

Porta de forno de microondas

The filler of the cavity with a polymer:

- 1. prevents the entrance of soil
- 2. reduces the dimensions of the choke cavity

Que polímero usar?

$$P = \frac{1}{2} \left[(\sigma + \omega \varepsilon') E^2 + \omega \mu' H^2 \right] \implies \varepsilon'' \downarrow$$
$$\lambda_{ef} = \frac{\lambda}{\sqrt{\varepsilon'}} \implies \varepsilon' \uparrow$$

ABS, PBT, PP

$$\mathcal{E}^* = \mathcal{E}' - i \mathcal{E}''$$

	2.45	GHz	12.8 GHz		
	َع	ε´´(10-4)	َع	ε´´(10 ⁻³)	
PP	2.46	11	2.40	11	
ABS	2.96	23	2.73	53	
PBT	3.68	45	3.24	109	

Introdução de carbono em PBT

Modelo de mistura

Conclusões

- Small perturbation to calculate complex permittivity, using a resonant cavity
- PBT is an adequate polymer to prevent leakage in the attenuator hole ($\lambda/4$)
- Introduce 1.5% black carbon particles to optimize the properties
- Generalised Loyenga law to fit the data

The price of 1 kg of tomato seed? 50.000 euros!!

- ➤ I kHz domain : Solid Water (ice)
- ➢ B MHz domain : Bound or Adsorbed Water
- ➢ W GHz domain : Free Water
- **C** Contribution of the conductivity

Lei de Wiener

Using Wiener law we postulate : a) the addition of dielectric contributions b) no dependence with the morphology

$$\varepsilon'' = \varepsilon''_{mat} \cdot \varphi_{mat} + \varepsilon''_{bw} \cdot \varphi_{bw} + \varepsilon''_{fw} \cdot \varphi_{fw}$$
$$\varepsilon' = \varepsilon'_{mat} \cdot \varphi_{mat} + \varepsilon'_{bw} \cdot \varphi_{bw} + \varepsilon'_{fw} \cdot \varphi_{fw}$$

			Living seed		Death seed			
	ε'	ε''	%	partial ε'	partial ε''	%	partial ε'	partial ε´´
Matrix	3	0.01	80	2.4	0.8 10-2	80	2.4	0.8 10-2
Bound water	10	0.1	18	1.8	1.8 10-2	2	0.2	0.2 10-2
Free water	70	30	2	1.4	60 10-2	18	12.6	540 10-2
Total				5.6	62.6 10 ⁻²		16.2	541 10 -2

Condicionamento de sementes

seeds

v = Volume of the sampleV = Volume of the cavityK = Depolarisation or coupling factor

Teoria das pequenas perturbações

Cavidade em carga

∆(1/Q) versus massa (semente de tomates)

1st critério de eliminação

The seeds outside the ellipsoid of statistical dispersion are probably death!

Anisotropia da semente

Campo polarizado

E is strongly polarised

The rotation of seed show us, with the measurement of variation of coupling factor (K), the anisotropy or dielectric heterogenity

Medida da anisotropia

In the ellipsoid distribuition we choose:

5 seeds outside + 5 seeds inside (64,54,5,37,28) (7,9,14,27,32)

2º critério de eliminação

Eliminação de sementes

1 st criterion – The high quantity of death cellules (seeds outside the ellipsoid) probably implies a death seed!
2 nd criterion – The seeds (inside or outside the ellipsoid) with high anisotropy are probably death!

Conclusões

The statistical discrimination with these criterions is rather good

The germination of the seeds confirm this discrimination

This lab methodology can be implemented in industry

Sementes e

J.L. Damez et. al., Meat Science 77 (2007) 512.

Como conseguir o efeito PTCR?

Partículas de carbono na matriz

Termografia

$$P_{abs} = \frac{1}{2} \left[(\sigma + \omega . \varepsilon'') . E^2 + \omega . \mu'' . H^2 \right]$$

Aplicações

Termografia

Aplicações

Com 30% de tetracosano encapsulado

Aplicações

Com 44% de tetracosano encapsulado

Conclusões

- O método apresentado revela-se útil para produzir compósitos com efeito PTCR.
- É necessário a sua optimização de modo a obter uma reprodutibilidade do efeito em sucessivos ciclos térmicos, e sobretudo aumentar o salto na resistência num menor intervalo de temperatura.
- Poderá conseguir-se, encapsulando as partículas de tetracosano no estado liquido, isto é, quando possuem um maior volume.
- Dispositivos auto reguladores e de segurança.

Thanks for your attention!

