

MAP-fis Essay Proposal, 2015-2016

(please write in English)

Supervisor

Name: Célia Tavares de Sousa

e-mail: celiasousa@fc.up.pt

Title

High-aspect-ratio magnetic nanoparticles as a multimodal nanocarriers for cancer therapies

Area

(Materials, Optics, Condensed Theory, High Energy Theory,....);

Materials

Summary of Proposal

Cancer is a leading cause of death worldwide. The current cancer therapies are commonly associated with undesirable side effects, due to their cytotoxic and poor tumor targeting. A major advance in drug-delivery could be achieved if drug-carrying presents an efficient dual triggering: treatment and transport/release of the drug. In this context, nanocarriers can be used for target drug delivery and combined with hyperthermia can thereby improve the therapeutic index of the treatment [1, 2]. To improve the treatment efficiency a magnetic core can be encapsulated inside a biocompatible nanoparticle to perform hyperthermia. Beyond the use of the classic spherical nanoparticles, the novel and promising high-aspect-ratio nanoparticles synthetized by template assisted nanofabrication can be employed in order to become the magnetic core [3, 4].

This essay proposal targets a review of the fabrication methods of high-aspect-ratio nanoparticles synthetized by template assisted nanofabrication for biomedical applications, with main focus on the electrodeposition in porous templates and its optimization for achieve highly organized arrays of nanowires.

References

(to allow students first look at topic)

[1] K.D. Tew & P.B. Fisher, Advances in Cancer Research, (2013) v118, Cap. 1, Elsevier, USA.

[2] G.F. Ismael, D.D. Rosa, M.S. Mano and A. Awada, Novel cytotoxic drugs: old challenges, new solutions, Cancer Treat Rev, 34 (2008) 81-91.

[3] Y. Geng, P. Dalhaimer, S. Cai, R. Tsai, M. Tewari, T. Minko and D.E. Discher, Shape effects of filaments versus spherical particles in flow and drug delivery, Nature Nanotechnology, 2 (2007) 249.

[4] L. Asin, M. R. Ibarra, A.Tres, and G.F. Goya, Controlled Cell Death by Magnetic Hyperthermia: Effects of Exposure Time, Field Amplitude, and Nanoparticle Concentration, Pharmaceutical Research, 29 (2012) 1319-1327