
An Experimental Methodology for Speci�cation

Simulators

Vítor Rodrigues1

MAP-i PhD student
Faculty of Sciences of University of Porto

vitor.rodrigues@fc.up.pt

Abstract. As the requirements for system analysis and design become
more complex, the need for a natural, yet formal way of specifying soft-
ware systems is everytime more necessary. The Object-Process Method-
ology (OPM) [PD99] provides a precise modeling language called Object-
Process Language (OPL) that supports analysis and design of software
systems that is amenable to veri�cation and, potentially, can also serve
as a basis for automatic conversion into executable code. However, the
views of the project stakeholders can only in part be concretized in anal-
ysis and design artifacts and, at the same time, only part of the software
system can be derived from the OPM speci�cation models, leaving the
�nal task to the implementers. The absence of a language system capable
to unify aspects of requirements speci�cation with the actual software
system speci�cation introduces a semantic gap between these two speci�-
cation languages. The hypothesis of my PhD thesis is that this semantic
gap can be minimized by the introduction of a pragmatic component that
harmonize aspects of software speci�cation (centered on the semantics of
the program) and its implementation (centered on the syntax of the pro-
gram) and that is capable to combine di�erent programming paradigms
such as logic, functional and object orientation.

Keywords: Object-Process Methodology (OPM), Object-Process Language
(OPL), Test-Driven-Development (TDD), hybrid design techniques, prag-
matics, speci�cation simulators, interpreted programming languages.

1 Introduction

Pragmatics is the study of the use of meaningful strings to communicate about
extra-linguistic structure in an interaction process between users of the language.
A very concise de�nition of pragmatics is that syntax studies Form, semantics
studies Form + Content, and pragmatics studies Form + Content + Use [vE03].

From the point of view of the management of software projects, this last
aspect can be of extreme relevance: if during the initial analysis phase there
is a place for referring to the use of already available implementation artifacts
(interface signatures), then there is the possibility to analyze the problem already
in terms of contracts with these abstract interfaces. One de facto development
methodology that employs this form of thinking is Test-Driven Development



(TDD) [Amb04] in which the implementation artifacts are created before their
concrete implementation.

The word use would have two meanings: (1) from the point of view of stake-
holders, they can use the speci�cation artifacts, where the semantic knowledge
is expressed, more freely because the implementation aspects are simple declar-
ative annotations on the semantic model; (2) from the point of view of the
implementers, they can use the speci�cation artifacts as the high-level view over
the program's business logic and focus mainly on the development of context-
independent and reusable pieces of software. In this way, the system speci�cation
is itself the program and is kept consistent with the views of all the participants
at all times [Rod05] [RH04].

Nonetheless, the speci�cation artifacts would have to take in consideration
the implementation of the program expressed in declarative means. This way of
system speci�cation is very di�erent from the one adopted by the �water-fall�
methodology: the implementation artifacts are referred in the initial speci�cation
instead of being derived from design artifacts trough successive transformations
such as in model-driven engineering. Moreover, a completely declarative speci�-
cation does not impose a single computation paradigm on the system, such as
object orientation, since it is associated computation is based on interpretation

and not execution.
The remainder of this paper is organized as follows. Section 2 introduces the

main di�culties in the application of the �water-fall� methodologies and gives
possible alternatives based on hybrid techniques. Section 3 enumerates the two
di�erent points of view of the users of the software product and its implementers,
pointing to possible causes for the mentioned semantic gap. Section 4 gives a brief
introduction to the semiotic system of the �speci�cation simulator� and presents
an example of an abstract program speci�cation. Section 5 describes the dynamic
of the development process and the problem of code generation. Finally, Section
6 presents the conclusions.

2 Why do we need an experimental methodology?

One of the fundamental questions we do during testing and program veri�cation
is: �Given an implementation unit, can we check its correctness so that it obeys
to the initial speci�cation?� [HJG08]. The di�culty in achieving this goal is that
both testing and program veri�cation should be made during all the phases of
the project and not only at the �nal stages like in the Veri�cation and Validation
stages of the �water-fall� methodology. The adoption of a re�ned methodology
for testing, such as Test-Driven Development, requires a closed-loop development
process with feedback branches so that the initial speci�cation is updated in each
iteration. By de�nition, one methodology of this kind explores experimentation
in such a way that it is the basis for software construction.

On the other hand, the Object-Process Methodology raises the level of ab-
straction much higher to the level of the OPL natural language. The syntax of
OPL is well de�ned and unambiguous and provides a �rm basis for automated



implementation of executable code generation and database schema de�nition.
However, round-trip engineering within the object-oriented code-generation do-
main is di�cult and works well if the source code that implements the derived
object classes is added only after achieving a stable abstract model [Rod07].
Moreover, �overcoding� can occur since the design models tend to focus on one
solution for the problem and not on the problem itself. The main di�culty of
this process resides in the fact that the costs associated with detection of design
and coding defects grow exponentially along the �water-fall� project stages.

In both cases, software engineering is concerned with techniques useful for
the development of e�ective software programs, where �e�ective� depends upon
speci�c problem domains. We make the assumption that to answer the question
�Is this technique e�ective� we need a measurement of the relevant attribute.
For example, if e�ective means low cost, then cost of development is a measure.
While the OPM methodology leaves the design implementation details from
apart, the TDD methodology has a very low semantic value. Nevertheless, one
hybrid methodology would be capable to unify the power of abstract design
models with the concreteness of implementation artifacts so that the software
product is a e�ective as necessary [RLM08]. The hybrid methodology proceeds
by experimentation, integrating context-independent implementation units that
acquire a semantic meaning in the context of an application or business process.

The objective of my PhD thesis is to design a new speci�cation language that
is at time a programming language. This language is a �glue language� that is
used to articulate di�erent artifacts of the user's program, i.e., the data struc-
tures are associated with implementation units throughout the interpretation of
the �pure� semantics of the speci�cation statements. Therefore, its purpose is to
cover all the �holes� in the speci�cation (interaction sequences for which there
are no de�ned patterns).

The input language of the �speci�cation simulator� would support both de-
sign and engineering activities. Here, design corresponds to the creative activity
of conceiving a novel solution to a unique problem, whereas engineering is the
usage of a prede�ned solution (represented by the signatures of the implemen-
tation units) [BB06]. Put in a di�erent perspective, it shall be considered two
levels of design. At the higher level of abstraction, design is made by the means
of a natural language fragment which brings the design activity closer to that of
requirements elicitation. Conversely, at the lower level we also design implemen-
tation units but, since they are context independent and must be speci�ed using
a particular programming language, we consider this design activity to have a
stronger engineering facet.

The main objective is avoid the full top-down design approach that exists
in the traditional �water-fall� methodologies and to enrich the problem speci�-
cation with already available pieces of software in a bottom-up manner [PE93].
This choice can only be pro�table if the we provide designers with one modeling
language that is not constrained to a particular computational paradigm such as
object-orientation. A fragment of natural language would be able to model the
problem in a way that users themselves can express their views. The outcome



of this hybrid design methodology is that the problem/product speci�cation is
made of heterogeneous artifacts [RLM08]. From the engineering point of view,
the goal is to validate available speci�cations of implementation units against
one possible abstract speci�cation. Indeed, the experimental methodology pro-
posed in [ZW98] focus on the assessment of the e�ectiveness with which we go
through the process of correlating the two di�erent domains of abstract models
and concrete implementations.

The pragmatic value of such a language is that the user sees the immediate
e�ect of correlating a design speci�cation with available implementation signa-
tures when he �runs� the program. The compiler for the language can be seen
as a �speci�cation simulator� because it interprets the speci�cation instead of
starting by generating code from design artifacts, compile them to bytecode
and �nally execute the program. The �success� of this new language depends
on experimental character of the user experience. There will be a single model
containing one abstract program that will be complete when we can say, �I tried
it, and I like it.� [ZW98].

3 The users' experience

Experiments are done when we can manipulate behavior directly, precisely and
systematically. The pragmatic value of a speci�cation language that incorpo-
rate implementation artifacts is that the semantics of the program can remain
unaltered if we change the implementation signatures and, conversely, we can
change the semantic context for a speci�c implementation usage. This type of
experimentation has a correlational e�ect and can be done in a �toy� situation,
where events are organized to simulate their appearance in the real world, or
in a ��eld� situation, where events are monitored as they actually happen. Pure
semantic aspects and pure implementation aspects of the program coexist in a
single model: the variation in the dependent variable(s) is related to the variation
of the independent variable(s). For this reason, experiments evaluating models
can be designed as �doubleblind� experiments, where the users of the language
don't know what the prediction is until after the experiment is done [P�94].

This purely declarative description of knowledge allows us to deal with higher
levels of abstraction that characterize the problem and the solution space. What
works and does not work will evolve over time based upon feedback and learning
from applying the ideas and analyzing the results.

In conception methodologies such as OPM, the designers and analysts are
responsible for the high-levels models of the system but it is up to the developers
to actually implement and test these models. Consequently, what could be a
self-evident model for an expert in problem domain can become incomplete or
ambiguous for an implementer. On the other hand, a program written in the
pragmatic speci�cation language is always as a tentative hypothesis from which
the program is drawn out and tested within the scope of its logical or empirical
consequences [Bas96].



The scienti�c method applied to the whole process proceeds with the fol-
lowing steps. A domain theory to explain a given problem is developed using
the speci�cation language constructs. Such semantic expressions are written di-
rectly in a fragment of natural language and are taken as one hypothesis which
is tested against the implementation artifacts. References to these artifacts are
also expressed in natural language (see Figure 2). The data collected from this
experiments is analyzed to verify or refute the claims of the hypothesis. The �tun-
ning� of the program consists in the adaptation of the implementation artifacts
to their semantic context or vice-versa.

4 The language of the �speci�cation simulator�

The heterogeneity of symbols that coexist inside the language of the �speci�-
cation simulator�, some pertaining to semantics of the program (structure and
function) and others to the syntax of the program (algorithmic neutral seman-
tics), provide the opportunity to conceive the simulator as a semiotic system
[Tav08]. In the Hjelmslev's semiotic model of language, the fundamental dif-
ferentiation is between content and expression. The content plane is used to
represent the �meaning� of a symbol (sign) and the expression plane refer to the
actual e�ect produced by the manifestation of the symbol (sequence of symbols).

A computer program written using the simulator's pragmatic component is
from the beginning dependent on the this �reciprocal� characterization of content
and expression, between a domain model and a set of implementation interface
signatures. According to Hjelmslev, �there can be no content without an ex-
pression, or expressionless content; neither can there be an expression without
a content, or content-less expression�. The semantic gap between the domain
problem and one of the solutions for it, is precisely the disconnection of the two
dimensions [Boy99] and its main cause is that the both speci�cation and im-
plementation languages can conform to di�erent computational paradigms. For
example, the OPL language is a textual natural language and it is used to derive
object-oriented source code.

The content-expression di�erentiation can be seen in practice in the work
of Hoare [Hoa76] with the compound notation. An abstract program can have
abstract variables and concrete variables that are processed by a body of proce-
dures or functions. For a given primitive fj needed by the abstract program, we
say that �pj models fj�.

ti · pj < actual parameter part >

In order to capture the pragmatic value within the computational e�ects
it is necessary to identify the phases through which the implementation arti-
facts are transformed. The computational e�ects are produced by some monadic
transformer that is able to bind one data structure to an arbitrary number of
functions that operate over the data structure and to produce new values for the
same data structure. Wadler proposes monadic functional programming as the



appropriate meaning of �Intensional Programming�. A monad can be thought of
as an operation (∗) on data types or domains which, given a domain D , yields a
new domain D∗. The idea is that the elements of D∗ are in some sense generated
by the elements of D. The canonical example is to take D∗ to be the collection
of streams over D [Wad].

Figure 1 illustrates four distinct component parts [DG80] of the �speci�cation
simulator�. This �rst is the generative component that studies the syntactical
structure of the natural language sentences and uses a �rst-order logic framework
to express them [DLS93]. The second component is transformational and is
responsible for transforming the program expressed in �rst-order logic into the
functional programming framework de�ned by the monadic interpreter [BS06].
The third component is diagrammatic because it constructs the diagram of the
functional program, that is, the abstract syntax tree of the program that will be
evaluated by the monadic interpreter [ADM05]. The fourth component is called
machinic and corresponds to the evaluation made by the monadic interpreter
[Wad95].

Fig. 1. The four components of the pragmatic language system

During the interpretation of a speci�cation statement, a query is made to
the �rst-order logic framework to obtain a reference to the data structures of
the abstract entities. These data structures contain the input values for some
concrete implementation unit. Using the same query mechanism, it is obtained a
callable reference to the implementation unit that �synthesizes� the speci�cation
statement. These two implementation artifacts are instantiated in intensional
contexts as possible worlds of the speci�cation statement and are treated as
continuations by the monadic interpreter (see Figure 2). Then, the speci�cation
simulator passes the input values to the implementation unit, invokes it and
stores the output values back on the data structure. Therefore, there will be
di�erent life-cycles for the data and for the implementation units: 1) along time,



an XML stream will be created by the simulator containing the history of the
computation; 2) the implementation units are instantiated in the scope of a
single speci�cation statement.

Example of an abstract program that adds to numbers

Set of relations

Entity A adds to Entity B
Entity A data_is A_xml
Entity B data_is B_xml
Relation adds mapped_function_is func_add

Functional program Entity A (with A_xml) adds to Entity B (with B_xml) in
func_add(type_a, type_b)

Fig. 2. Example of a set of speci�cation statements and the derived functional program

5 Dynamic analysis and simulation

The speci�cation methodology of OPM essentially copes with the initial phase
of the development process and the language OPL is �a language that is both
formal and intuitive, thereby catering to the need of humans on one hand and
machines on the other hand� [PD99]. This appropriateness of the OPL natural
language for writing a derivable software prototype is placed in evidence when we
consider the project life-cycle and the product life-cycle. Applying a round-trip
process from the speci�cation artifacts to the software prototype, the product
life-cycle is also covered by the project's methodology.

The pragmatic language system I propose de�nes a controlled method that
executes the speci�cation, which is the product itself. The consequence of avoid-
ing code generation processes is that the speci�cation is interpreted rather than
compiled to some object-oriented programming language. In this sense, prag-
matics require a dynamic analysis method [ZW98].

There are two major weaknesses with dynamic analysis. One is the obvious
problem that if we instrument the product by adding source statements, we may
be perturbing its behavior in unpredictable ways. Also, executing a program
shows its behavior for that speci�c data set, which cannot often be generalized
to other data sets. Nevertheless, the underlying experimental method guarantees
that the speci�cation of product evolves by small iterations and produces simu-
lation results that are veri�able at all times. The development of the product is
cumulative since the very beginning.

From another perspective, the speci�cation model provides the means to
evaluate the embedded implementation artifacts. In this case we hypothesize, or
predict, how the world views of the domain experts will react to the available
technology. The main objective is to model each part of program independently
as being either structure, data or functions [JN95]. If we are able to instantiate



each of these variables and build an e�ective simulation environment, results can
be obtained more readily than when �water-fall� methods are deployed. By ignor-
ing technological imperatives such as the use of speci�c computing paradigm or
a speci�c programming language, the simulation of a speci�cation can be easier,
faster, and less expensive to run than the �full� product implementation driven
by a code-generation process.

6 Conclusions

The motivation for the �speci�cation simulator� is to decouple data structures
from implementation units so that data can be stored in XML and manipulated
by persistent means and not by memory operations. The link between these two
artifacts are the speci�cation statements where the semantic of the program is
declared. Data structures are not encapsulated inside an �object� that provides
operations like in object-orientation. The relation between a data structure and a
function is established only when �interpreting� a speci�cation statement. On the
other hand, the implementation units only acquire a semantic meaning during
this interpretation.

Despite the fact that OPM provides an e�ective way to track the prod-
uct life-cycle since the beginning of its speci�cation, there will be always some
doubt if the implementation actually conforms to the speci�cation. I believe
that the direct veri�cation of concrete implementations will contribute to reduce
this uncertainty without losing the ability to de�ne and bene�t from semantic
abstractions. Additionally, the introduction of the pragmatic component that ar-
ticulates aspects of syntax and semantics and the interpretative character of the
monadic interpreter can e�ectively eliminate the semantic gap between models
and implementations. In Deleuze's words, �pragmatics is not a complement to
logic, syntax, or semantics; on the contrary, it is the fundamental element upon
which all the rest depend� [DG80].

In respect to the methodology of writing a program for the �speci�cation
simulator�, it is based on experiments and collaborative work. A single model
aggregates di�erent views of the same problem and the development of the pro-
gram starts at the same time as its speci�cation. The most signi�cant aspect of
this programming paradigm is that the users of the program can, at all times,
make amendments to the speci�cation without imposing signi�cant changes on
the implementation artifacts or enforcing a delay in the development caused by
recurrent source code generation processes. The objective is not to �ll the se-
mantic gap introduced by code generation but rather minimize it by including
already available implementation procedures in the semantics of the speci�cation
language.

References

[ADM05] Mads Sig Ager, Olivier Danvy, and Jan Midtgaard. A functional correspon-
dence between monadic evaluators and abstract machines for languages with
computational e�ects. Theor. Comput. Sci., 342(1):149�172, 2005.



[Amb04] Scott W. Ambler. The Object Primer. Cambridge University Press, 2004.
[Bas96] Victor R. Basili. The role of experimentation in software engineering: past,

current, and future. In ICSE '96: Proceedings of the 18th international con-

ference on Software engineering, pages 442�449, Washington, DC, USA, 1996.
IEEE Computer Society.

[BB06] Ariane Moraes Bueno and Simone Diniz Junqueira Barbosa. Using an
interaction-as-conversation diagram as a glue language for hci design pat-
terns on the web. 4385:122�136, 2006.

[Boy99] Nik Boyd. Using natural language in software development. The Journal of

Object-Oriented Programming � JOOP, 11(9):45�55, 1999.
[BS06] Chris Barker and Chung-Chieh Shan. Types as graphs: Continuations in type

logical grammar. J. of Logic, Lang. and Inf., 15(4):331�370, 2006.
[DG80] Gilles Deleuze and Félix Guattari. A Thousand Plateaus. Continuum, 1980.
[DLS93] Mary Dalrymple, John Lamping, and Vijay Saraswat. Lfg semantics via

constraints. In Proceedings of the sixth conference on European chapter of

the Association for Computational Linguistics, pages 97�105, Morristown,
NJ, USA, 1993. Association for Computational Linguistics.

[HJG08] Gerard J. Holzmann, Rajeev Joshi, and Alex Groce. Model driven code
checking. Automated Software Engg., 15(3-4):283�297, 2008.

[Hoa76] C. A. R. Hoare. Proof of correctness of data representation. pages 183�193,
1976.

[JN95] Neil D. Jones and Flemming Nielson. Abstract interpretation: a semantics-
based tool for program analysis. pages 527�636, 1995.

[PD99] Mor Peleg and Dov Dori. From object-process diagrams to natural object-
process language. pages 221�228, 1999.

[PE93] Rinus Plasmeijer and Marko Van Eekelen. Functional Programming and

Parallel Graph Rewriting. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1993.

[P�94] Shari Lawrence P�eeger. Design and analysis in software engineering: the
language of case studies and formal experiments. SIGSOFT Softw. Eng.

Notes, 19(4):16�20, 1994.
[RH04] Peter Van Roy and Seif Haridi. Concepts, techniques, and models of computer

programming. 2004.
[RLM08] Vitor Rodrigues, João Correia Lopes, and Ana Moreira. An hybrid design

solution for spacecraft simulators. In CAiSE Forum, pages 29�32, 2008.
[Rod05] Vitor Rodrigues. The Role of the Requirements Engineering in Ontology

De�nitions. Technical report, Master in Informatics course, FEUP, December
2005.

[Rod07] Vítor Rodrigues. On the Speci�cation of Spacecraft Simulators using Object-
Oriented Methodologies. Master's thesis, University of Oporto, Departament
of Electrical and Computer Engineering, 2007.

[Tav08] Miriam Taverniers. Hjelmslev's semiotic model of language: An exegesis.
Semiotica, 2008(171):367�394, 2008.

[vE03] Jan van Eijck. Computational semantics with functional programming.
Downloaded on March 2004, 2003.

[Wad] Bill Wadge. Monads and intensionality.
[Wad95] Philip Wadler. Monads for functional programming. In Advanced Func-

tional Programming, First International Spring School on Advanced Func-

tional Programming Techniques-Tutorial Text, pages 24�52, London, UK,
1995. Springer-Verlag.



[ZW98] Marvin V. Zelkowitz and Dolores R. Wallace. Experimental models for vali-
dating technology. Computer, 31(5):23�31, 1998.


