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1. Introduction 
 

From the international monetary system and power plants to TVs and cell phones, almost 
everything runs on (embedded) software. In office buildings, the elevators, the lights, the water, the air 
conditioning are all controlled by software. In cars, the ignition timing, the air bag, and the 
infotainment system is controlled by software. Almost every written communication that’s more 
complicated than a postcard depends on software. 

Software is currently measured in terms of millions of lines of code, the complexity of which 
makes software development cost-intensive and error-prone. Software developers already spend 
approximately 80% of development costs on identifying and correcting defects [3], and yet few 
products of any type other than software are shipped with such high levels of faults. 

With the pervasion of software at all levels of society the impact of software defects is 
becoming increasingly problematic. A 2002 landmark study on this problem [3] estimated that software 
defects cost the US economy some $60 billion per year (around 0.6% GDP). High-profile incidents 
caused by malfunctioning software include several Mars landers/orbiters, Ariane 5, USS Yorktown, 
Denver Airport baggage-handling system, LA Airport air-traffic control system, etc.  

Apart from economic loss during deployment, software defects also account for an important 
part of the development costs. With respect to development costs residual defect density is very much 
dependent on the effort invested in testing, defect finding and fixing. For embedded software 
development cost estimates are quoted around $15-30 per line. The US Defense Dept. and Carnegie-
Mellon’s Software Engineering Institute estimate that defect density ranges from 5 to 15 bugs per 
KLOC. In the defense realm costs can range up to $100, while for highly critical applications, such as 
the Space Shuttle, the cost per line approximates $1,000. This higher effort results in significantly 
lower defect density. For example, the NASA Shuttle code (420 KLOC) only had 17 faults [20]. 
Although not all defects manifest themselves as fatal (NASA JPL data suggest that only some 20% are 
fatal), typically all defects have to be diagnosed in order to locate the most fatal ones. 

Fault diagnosis is a major cost factor in both the development and the deployment of software. 
Based on the assumption that localizing defects takes on average 75 minutes per defect, at the 
development stage, the above data implies that fault diagnosis already accounts for more than 
$3,000,000/MLOC. At the deployment stage the costs of diagnosing and fixing residual defects is not 
known. However, a significant fraction of the annual $60 billion economic loss is attributed to (1) 
system down time (or degraded performance) while the problems are being diagnosed and repaired, 
and the effort spent on diagnosis and repair (in some cases diagnosis accounts for 60% of the 
downtime). Given the fact that the economic loss is in the same order of total development cost, and 
the fact that diagnosis and repair is usually more costly when applied later in the software life cycle, it 
is therefore reasonable to assume that diagnosis costs at deployment phase may even exceed the costs 
at the development stage. 

The above data clearly suggests that even a large investment in development (e.g., $1,000 per 
line of code (amounting to a staggering $1,000,000,000 per MLOC) does not yield zero-defect code, 
despite recent advances in software engineering (e.g., formal methods). In fact, for many applications 
the optimum investment set point (minimizing development and deployment costs due to defects) will 
correspond to a much higher residual defect density. For instance, in consumer electronics it is 
accepted practice that time-to-market and developer (testing) cost often take precedence over low-
defect-density software. The fact that in many domains it is more pragmatic to simply cope with 
failures, rather than invest asymptotic effort at the development phase, is increasingly being 
recognized. In this new paradigm fault diagnosis is a central focus, since providing the system (and/or 
operator) with the crucial insight what part(s) of the system cause(d) the failure(s) is key to timely 
recovery and/or repair. As the earlier data suggests that a large fraction of the costs incurred at 
development and deployment is related to fault diagnosis, investments in better fault diagnosis (less 
effort, less time, more precision) have a dramatic effect on development cost and costs incurred at 
deployment due to residual defects. 

 
2. Fault Diagnosis 

 
Fault diagnosis aims at identifying the root cause(s) of system malfunction based on external 



observations. For the purpose of diagnosis the system is broken down in a number of components 
(subsystems) in terms of which the diagnosis is expressed. The diagnostic process takes observations 
(values, events) as input, and produces a list of possible diagnoses, where each single diagnosis may 
involve multiple component faults to be a likely explanation for the observations (e.g., observations 
can be explained by the combination of component 13 and component 99 at fault). 

Due to the fact that the observations are typically limited in time and space (e.g., lack of 
measurement time, lack of sensors), and the fact that information on system behavior is limited, the 
size of the list of possible diagnoses can be large, while only one diagnosis represents the true system 
fault state. Next to computational complexity, this limited diagnostic accuracy is a key performance 
metric. Fault diagnosis is typically triggered by the detection of an error (or errors), i.e., the deviation 
of a system value from its nominal value (pass/fail information), also referred to as a symptom.  

Traditionally, in diagnosis of software faults (defects, bugs) a symptom-based approach has 
been adopted, which is based on the existence of a mapping from symptoms to diagnoses. The 
implementation of this mapping can range from a symptom table to an expert system, and is typically 
compiled by humans. While such a mapping offers split-second diagnosis, the mapping is usually not 
complete, introducing the risk of bad diagnostic performance in unforeseen situations. Moreover, 
deriving the mapping is an intensive and error-prone process given its complexity. Especially in 
software, implementing symptom-based diagnosis is virtually impossible, as illustrated by the fact that 
even simple exception handling (where diagnosing the root-cause of the exception is typically even left 
out) requires significant coding effort. The large cost associated with traditional diagnosis has lead to a 
number of contemporary approaches, which aim for completeness and automation. The state-of-the-art 
techniques in software fault diagnosis are model-based diagnosis (MBD, based on reasoning) and 
spectrum-based fault localization (SFL, based on statistics) (due to lack of space, no detailed 
information is give ; refer to [1] for detailed information). 

 
3. Work Package: Automatic Error Detection 
 
While SFL’s inherent diagnostic precision is lower than MBD, related work as well as the 
abovementioned industrial experience suggests that SFL is highly usable in the software domain [1]. 
Moreover, the fact that in SFL no compositional modeling (behavior, structure) is required makes SFL 
a particularly attractive candidate for fault diagnosis technique that requires minimal modeling effort, 
i.e., that aims at maximum automation of the entire fault diagnosis process. We believe the latter to be 
a crucial success factor for adoption of (computerized) fault diagnosis in an industrial context. 

At development time information whether a run has passed/failed is typically derived from 
existing test oracles. However, at deployment time no information exists on nominal system behavior 
unless models are introduced. While at a high behavioral level the use of models (and/or specifications) 
cannot be avoided, much information on (impending) errors can be inferred from low-level errors 
within the code. For instance, an out-of-bound variable value (e.g., NULL pointer, segmentation 
violation, index overflow, response timeout) is a clear indication that a fault has been triggered, while 
the downstream effect may not yet be manifest (or may even go unnoticed). Recent research on error 
detection as well as preliminary research by the advisor [2] has indicated that automatic 
instrumentation with simple, generic invariants provides useful pass/fail information to SFL such that 
diagnostic precision can be achieved comparable to the use of test oracles. Eliminating the need for 
(error) modeling paves the way for fully automatic software diagnosis. 

In this work package we propose to investigate the use of various generic invariants in the 
value and time domain, their effect on diagnostic precision, their relation with existing test oracles, and 
their run-time overhead, in particular, the density required (trading off overhead against precision). 
Evaluation will be based on standard test suites, while the associated input dataset is extended (using, 
e.g., genetic algorithms) to generate more observations.  
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Note: The work will be in close collaboration with Prof.dr.ir. A.J.C. van Gemund, Delft University of 
Technology, the Netherlands. 


