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Abstract

Inductive Logic Programming (ILP) is a machine learning technique that: (1)
can handle multi-relational data, (2) can produce classifiers that are inter-
pretable by specialists and (3) can help uncovering non-trivial knowledge that
is also interpretable by specialists. One of the main drawbacks of ILP systems
is their lack of efficiency in producing new knowledge when searching for good
classifiers in a large space of hypotheses. Despite the various efforts towards
making ILP systems efficient, it is still not possible to exploit a vast portion of
the search space in order to find better classifiers. A notable exception is the
very recent work by Srinivasan and Bain [12], which used a data stream tech-
nique to be able to process millions of data items. We argue that paralelization
techniques can further improve data processing by ILP systems and would like
to pursue this research path. Several works in the literature have shown that
parallelization can help improving performance without loosing the classifica-
tion quality, but to the best of our knowledge works in this area only deal with
hundreds or thousands of data items. We would like to be able to process mil-
lions of data items in parallel in an ILP system. Our main application is in the
context of the FCT project ABLe whose main objective is to build a system that
can integrate radiologists’ expertise with Inductive Logic Programming (ILP).

1 State-of-the-Art and Originality

Inductive Logic Programming (ILP) machine learning systems are arguably the
most useful in the medical domain but they face the challenge of dealing with
huge search spaces caused by the ever growing amount of data produced in
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medical routines daily. Nevertheless, ILP systems have already been used to
construct predictive models for data drawn from diverse domains, for over a
decade. These include the sciences, engineering, language processing, environ-
ment monitoring, and software analysis.

Previous studies about the breast cancer condition have demonstrated that
relevant clinical information can be automatically extracted from mammographic
data. For example, there are indications that high mass density, an attribute
that is usually not considered relevant by most doctors, plays an important role
on malignancy of findings [6, 7, 14]. Another example [4] uncovers that seven
out of 435 women had an incorrect diagnostic leading to a tumour becoming
malignant in a two-year screening period. Yet other two works found a classifier
to predict undecisive biopsies [5, 9].

Despite these successful histories, an ILP system’s search space can grow
very quickly in ILP applications, very often preventing the systems from finding
the best possible set of rules. Several techniques have therefore been proposed to
improve search efficiency. Such techniques include improving computation times
at individual nodes [2, 10], better representations of the search [1], sampling the
search space [11, 15], and parallelism [8, 3]. The latter can be obtained from
very different alternative approaches, such as dividing the search tree, dividing
the examples, or even through performing cross-validation in parallel [13]. Very
recently, a stream-based ILP system has proven to work with millions of data
items [12]. Research on parallelization of ILP systems only exhibit results for
hundreds or thousands of data items. We would like to improve on that and be
able to process millions of data items in parallel using an ILP system.

It is thus proposed to address two issues in this work; the first is the devel-
opment and test of novel ILP parallel algorithms to be applied on several large
sets of mammographic data with the purpose of extracting non-trivial clinical
information. There is a performance concern regarding the ILP engine when
extracting rules from a large dataset of past mammographic data. We aim
at developing and testing different algorithms to achieve a comparatively fast
ILP rule inference procedure; this process will require dealing with very large
amounts of data, and so tackling database issues that will surely arise can be
considered a specific goal of this work as well.

The second issue we propose to address - and that is orthogonal to the
performance of the ILP system - is the integration of experts’ advice with the
previously inferred rules from the past mammographic data. One of the state-
of-the-art techniques to improve efficiency of ILP algorithms is to somehow
restrict the search space over which the system’s resources must span [2]. Our
work proposes to develop restrictions of the search space based on the validation
of rules by experts; this methodology allows the ILP system to focus its search
on parameters which are empirically more likely to be clinically pertinent both
for diagnosis and treatment of the breast cancer condition.
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