
Algebraic and Coalgebraic Methods in Software
Development

MAP-i — 2013-14

Summary

This document describes a proposal for a course on Fundations of Computing to be offered in the 2013-14

MAP-i edition. The proposal is supported by a team from Aveiro University (Dep. of Mathematics) and

Minho University (Dep. of Informatics).

1 Context and Objectives

An increasing number of computer based systems rely on the cooperation of distributed, hetero-
geneous components or services organised into open software architectures that, moreover, can
survive in loosely-coupled environments and be easily adapted to changing application require-
ments. Such is the case, for example, of applications designed to take advantage of the increased
computational power provided by massively parallel systems or of the whole business of Internet-
based software development. In order to develop such systems in a systematic way, the focus
of development methods has switched, along the last decade, from functional to architectural
issues: both data and processes are encapsulated into software units which are connected into
large systems resorting to a number of techniques intended to support reusability and modifia-
bility. This encapsulation principle is essential to both the object-oriented and the more recent
component-based software engineering paradigms.

This entails the need for semantic techniques able to cope either with date structuring and
prescription of functionality, as well as with specification and analysis of (externally observable)
behaviour. Both qualitative and quantitative, i.e. QoS-related, aspects o software have to be taken
into consideration.

If on data-intensive applications the main element to tackle is the structure of information and
its transformations, in dynamic, reactive computing the focus is placed on system’s behaviours
and their interactions. Quoting Robin Milner, in his Turing Award Lecture, computing science
has become a structural theory of interaction: Thus software, from being a prescription for how
to do something — in Turing’s terms a ”list of instructions” — becomes much more akin to a
description of behaviour, not only programmed on a computer, but occurring by hap or design
inside or outside it.

Both initial algebras and final coalgebras provide abstract descriptions of a variety of phenom-
ena in programming, in particular of data and behavioural structures, respectively. As universal
properties, they both entail definitional and proof principles, i.e., a basis for the development of
program calculi directly based on (actually driven by) type specifications. Moreover, such proper-
ties can be turned into programming combinators and used, not only to calculate programs, but
also to program with. In functional programming the role of such universals has been fundamental
to a whole discipline of algorithm derivation and transformation. On the oher hand, coalgebraic
modelling of dynamical systems and reasoning by coinduction has recently emerged as active area
of research.

This course explores the role of such algebraic and coalgebraic structures, and corresponding
logics, in program development. As expected, initial algebras turn out to be inductive data types,
i.e., abstract descriptions of data structures. Dually, final coalgebras entail a notion of coinductive,

1



behaviour types, representing the dynamics of systems. Therefore, the course will cover the core
ideas, techniques and results in

• Algebraic specification, induction and equational logic

• Coalgebraic specification, coinduction and modal logic for coalgebras

In both cases exposition will resort to suitable tool support (namely, OBJ, BOBJ and Circus).
In software development, relations nicely capture nondeterminism and vagueness of require-

ments. Probabilistic functions go a step further by quantifying the likelihood of each possible,
expected or faulty, behaviour. Such a shift from qualitative to quantitative reasoning, which is
becoming pervasive in Computer Science, calls for a language able to accommodate both these
aspects, while preserving the polymorphic and calculational style of functional and relational pro-
gram derivation. Recently, typed linear algebra has been suggested as a suitable candidate for such
a unifying role, when restricting to discrete probability spaces. A new module in the course, first
offered in the 2013-14 edition, will explore this perspective and its applications, namely to the
study of fault-propagation in software systems. It builds on very recent and exciting results on

• Linear algebra of programming and applications

To provide a common background to formulate and discuss the topics above, the course will
also include a brief

• Introduction to category theory

The course will build a roadmap to the broad area of algebraic and coalgebraic methods in
software development, not only by providing an introductory survey, but also by exposing students
to cutting-edge research topics and open problems, object of three research projects currently
coordinated by the proponent team:

• Mondrian (PTDC/EIA-CCO/108302/2008) on Foundations for architectural design: Service
certification, dynamic reconfiguration and self-adaptability,

• Qais (PTDC/EIA-CCO/122240/2010) on Quantitative analysis of interacting systems: foun-
dations and algorithms,

• Nasoni (PTDC/EEI-CTP/2341/2012) on Heterogenous software coordination: Foundations,
methods, tools.

Motivated students will have the opportunity to discuss possible PhD topics in Foundations of
Computing within the themes of this course. Funding opportunities may be available.

2 Learning outcomes

• Familiarity with the main topics, research questions and scientific challenges in the covered
area (algebraic and coalgebraic methods);

• Ability to apply them to building and reasoning about, abstract models for software, its
functionality, behaviour and composition.

• Ability to extract information from scientific papers in the area.

• Enhanced technical writing and presentation skills.

3 Pre-requisites

The course is almost self-contained, assuming only familiarity with elementary discrete mathe-
matics at undergraduate level. Some previous experience on semantics of programming languages
will help.

2



4 Format

Tutorial module, supported with demos and experimental lab work.

5 Grading

Assessment on base of an individual report on a research paper and a set of written exercises.

6 Course Contents

Plan

1. Introduction to category theory for computer science

(a) Universal properties; categories; isomorphism; monomorphisms and epimorphisms.

(b) Constructions in categories: duality, products, sums, limits and colimits.

(c) Functors and natural transformations

(d) The Yoneda lemma

(e) Adjoint functors and adjoint functor theorems

(f) Cartesian closed categories and λ-calculus

(g) Monoidal categories

2. Algebras and algebraic specification

(a) Signatures, models

(b) Equational logic

(c) Signature morphisms

(d) Refinements

(e) Introduction to the theory of institutions

(f) Behavioural specifications

3. Coalgebras and coalgebraic specification

(a) Coalgebras

(b) Bisimulation

(c) Coinduction, final coalgebras

(d) Logics for coalgebras

(e) Applications

4. Linear algebra of programming

(a) Categories of matrices.

(b) Probabilities and probabilistic functions.

(c) Adjunction: probabilistic functions represented by column stochastic matrices. The
‘matrix-transform’.

(d) Elementary probability theory encoded in linear algebra. Examples.

(e) The distribution monad.

(f) Applied linear algebra of programming: calculating fault propagation in mutually re-
cursive functions.

(g) Weighted automata and weighted coalgebraic systems.

(h) Weighted bisimulation. Probabilistic behaviour.

(i) LAoP for QoS calculation.

3



Textbooks and Reading Material

On category theory : [3, 34, 17, 2] [12, 11, 8, 33]

On algebraic specification : [12, 11, 8, 33]

On coalgebraic modelling and coinduction : [32, 15, 16, 1]

On linear algebra of programming : [28, 18, 29]

7 Team

Luis Soares Barbosa (Coordinator) is Associate Professor, with tenure, at the Department of In-
formatics of Minho University, and a researcher at Cctc (area of Theory and Formal Methods).
His research interests are related to program semantics and calculi applied to systems understand-
ing and rigorous software construction. A particular application area concerns the development of
formal models and calculi for software components, services and architectures. On this topic he
has published over the past 4 years more than 15 papers in several journals and conferences. He
has supervised 2 PhD thesis (1 in the area of the current proposal) and is currently supervising 5
PhD projects (2 in the area of the current proposal). Selected relevant publications on coalgebraic
modelling and coinductive reasoning: [4, 5, 25, 31, 6, 26, 7, 23, 22].

Dirk Hofmann is Assistant Professor at Department of Mathematics at the University of Aveiro,
and researcher at the Center for Research and Development in Mathematics and Applications.
His main interests of research focus on the development and application of categorical methods
in Mathematics, more specifically in algebra, topology and domain theory. On this topic he has
published more than ten papers in several journals over the past 4 years. He has supervised 4
Msc thesis and is currently supervising 1 PhD project. Selected relevant publications on category
theory: [14, 9, 10, 13].

Manuel António Martins is Assistant Professor at the Department of Mathematics of Aveiro
University, and a researcher at the Center for Research and Development in Mathematics and
Applications. His research interests are related to Abstract Algebraic Logic (AAL) and Algebraic
Specification of abstract data types; namely on the application of tools and results of AAL to
the specification and verification of software systems. On this topic he has published 6 papers in
international journals. He has supervised 4 MSc thesis (2 in the area of the current proposal) and
is currently supervising 2 PhD projects (1 in the area of the current proposal). Selected relevant
publications on specification and verification of software systems: [19, 24, 20, 21, 23, 22].

José N. Oliveira graduated in electrical engineering in 1978 from the University of Porto in Por-
tugal and received the MSc and PhD degrees in computer science in 1980 and 1984, respectively,
from the University of Manchester, United Kingdom. Since 2010 he has been an associate profes-
sor with habilitation at the Computer Science Department of the University of Minho, Portugal,
and a member of the High Assurance Software Laboratory (HASLab) of INESC TEC/University
of Minho. He is also a member of IFIP WG2.1 (Algorithmic Languages and Calculi) and of the
Formal Methods Europe (FME) association. He has been working on formal methods since his
PhD, with a recent interest in quantitative formal techniques relying on linear algebra and cate-
gory theory. In the last 3 years (2011-2013) he published 6 journal papers and supervised 4 PhD
theses on these topics. Selected relevant publications: [30, 28, 27, 18, 6, 29]

4



References

[1] J. Adamek. An introduction to coalgebra. Theory and Applications of Categories, 14(8):157–199,
2005.

[2] J. Adamek, H. Herrlich, and G. E. Strecker. Abstract and Concrete Categories. John Wiley & Sons,
Inc (revised electronic edition in 2004), 1990.

[3] S. Awodey. Category Theory. Oxford Logic Guides. Oxford University Press, 2006.

[4] L. S. Barbosa. Process calculi à la Bird-Meertens. In CMCS’01, volume 44.4, pages 47–66, Genova,
April 2001. Elect. Notes in Theor. Comp. Sci., Elsevier.

[5] L. S. Barbosa and J. N. Oliveira. Coinductive interpreters for process calculi. In Proc. of FLOPS’02,
pages 183–197. Springer Lect. Notes Comp. Sci. (2441), 2002.

[6] L. S. Barbosa and J. N. Oliveira. Transposing partial components: an exercise on coalgebraic refine-
ment. Theor. Comp. Sci., 365(1-2):2–22, 2006.

[7] L. S. Barbosa, J. N. Oliveira, and A. M. Silva. Calculating invariants as coreflexive bisimulations. In
J. Meseguer and G. Rosu, editors, Algebraic Methodology and Software Technology, 12th International
Conference, AMAST 2008, Urbana, IL, USA, July 28-31, 2008, Proceedings, pages 83–99. Springer
Lect. Notes Comp. Sci. (5140), 2008.

[8] M. Bidoit and R. Hennicker. Proving behavioral refinements of col-specifications. In Essays Dedicated
to Joseph A. Goguen, pages 333–354, 2006.

[9] Maria Manuel Clementino and Dirk Hofmann. Lawvere completeness in Topology. Appl. Categ.
Structures, 17:175–210, 2009.

[10] Maria Manuel Clementino and Dirk Hofmann. Relative injectivity as cocompleteness for a class of
distributors. Theory Appl. Categ., 21(12):210–230, 2009.

[11] J. Goguen and R. Burstall. Institutions: abstract model theory for specification and programming.
J. ACM, 39(1):95–146, 1992.

[12] J. Goguen and G. Malcolm. Algebraic semantics of imperative programs. MIT Press Series in the
Foundations of Computing. Cambridge, 1996.

[13] Dirk Hofmann. Topological theories and closed objects. Adv. Math., 215(2):789–824, 2007.

[14] Dirk Hofmann. Injective spaces via adjunction. J. Pure Appl. Algebra, 2010 (accepted).

[15] B. Jacobs and J. Rutten. A tutorial on (co)algebras and (co)induction. EATCS Bulletin, 62:222–159,
1997.

[16] A. Kurz. Coalgebras and modal logic. Technical report, Lecture Notes for ESSLLII’2001, Helsinki,
2001.

[17] S. Mac Lane. Categories for the Working Mathematician. Springer Verlag, 1971.

[18] H.D. Macedo and J.N. Oliveira. Typing linear algebra: A biproduct-oriented approach. Science of
Computer Programming, 2012. In press. DOI:10.1016/j.scico.2012.07.012.

[19] M. A. Martins. Behavioral institutions and refinements in generalized hidden logics. Journal of
Universal Computer Science, 12(8):1020–1049, 2006.

[20] M. A. Martins. Closure properties for the class of behavioral models. Theor. Comput. Sci., 379(1-
2):53–83, 2007.

[21] M. A. Martins. On the behavioral equivalence between k-data structures. Comp. J., 50(3):181–191,
2008.

[22] M. A. Martins, A. Madeira, and L. S. Barbosa. Refinement by interpretation. In Dang Van Hung
and Padmanabhan Krishnan, editors, 7th IEEE International Conference on Software Engineering
and Formal Methods (SEFM’09), pages 250–259. IEEE Computer Society Press, 2009.

[23] M. A. Martins, A. Madeira, and L. S. Barbosa. Refinement by interpretation in a general setting. In
J. Derrick E. Boiten and S. Reeves, editors, Proc. Refinement Workshop 2009, Electr. Notes Theor.
Comput. Sci. (256), pages 105–121. Elsevier, 2009.

[24] M. A. Martins and D. Pigozzi. Behavioural reasoning for conditional equations. Math. Struct. Comput.
Sci., 17(5):1075–1113, 2007.

5



[25] Sun Meng and L. S. Barbosa. Components as coalgebras: The refinement dimension. Theor. Comp.
Sci., 351:276–294, 2005.

[26] Sun Meng and L. S. Barbosa. A coalgebraic semantic framework for reasoning about UML sequence
diagrams. In Hong Zhu, editor, Proceedings of the Eighth International Conference on Quality of
Software, QSIC 2008, 12-13 August 2008, Oxford, UK, pages 17–26. IEEE Computer Society, 2008.

[27] S.-C. Mu and J.N. Oliveira. Programming from Galois connections. Journal of Log. Algebraic Pro-
gramming, 81(6):680–704, 2012.

[28] J.N. Oliveira. Towards a linear algebra of programming. Formal Aspects of Computing, 24(4-6):433–
458, 2012.

[29] J.N. Oliveira. Weighted automata as coalgebras in categories of matrices. International Journal of
Foundations of Computer Science, 2013. Accepted for publication.

[30] J.N. Oliveira and M.A. Ferreira. Alloy meets the algebra of programming: A case study. IEEE
Transactions on Software Engineering, 39(3):305–326, 2013.

[31] P. Ribeiro, M. A. Barbosa, and L. S. Barbosa. Generic process algebra: A programming challenge.
Journal of Universal Computer Science, 12(7):922–937, 2006.

[32] J. Rutten. Universal coalgebra: A theory of systems. Theoretical Computer Science, 249(1):3–80,
2000. (Revised version of CWI Techn. Rep. CS-R9652, 1996).

[33] D. Sannella and A. Tarlecki. Foundations of Algebraic Specifications and Formal Program Develop-
ment. Cambridge University Press, 2011.

[34] R. F. C. Walters. Categories and Computer Science, volume 28 of Cambridge Computer Science
Texts. Cambridge University Press, 1991.

6


