
MAP-I
Programa Doutoral em Informática

Source Code Analysis and
Manipulation

Unidade Curricular em Paradigmas de Programação
Programming Paradigms

(UCPC)

UMinho, FEUP

May 2013

Resumo

This document describes a Ph.D. level course, corresponding to a Cur-
riculum Unit credited with 5 ECTS. It corresponds to a joint UMinho-FEUP
proposal for UCPC (Programming Paradigms) in the joint MAP-i doctoral
program in Informatics, organized by three Portuguese Universities (Minho,
Aveiro, and Porto).

LECTURING TEAM

UMinho: Jácome Cunha, João Saraiva
FEUP: João Cardoso, Rui Maranhão

Coordinator: João Saraiva

1



A. Programmatic Component

1. Theme, Justification and Context

Motivation

This course concerns the analysis and/or manipulation of the source code of com-
puter systems. While much attention in the wider software engineering com-
munity is properly directed towards other aspects of systems development and
evolution, such as specification, design and requirements engineering, it is the
source code that contains the only precise description of the behaviour of the
system. Thus, the analysis and manipulation of source code remains a pressing
concern and an active area of research.

In this course, we will use the term source code, to mean any description of a
software system, being it a fully executable system or a non-executable one.
Thus, it includes machine code, very high level language-based program spec-
ifications (for example, attribute grammars), general purpose programming
languages (ie, Java, Scala, C, etc), domain specific languages (ie, MatLab, SQL,
VHDL, etc), document programming languages (like, HTML/XML, LATEX, etc),
end-user programming environments (like, Spreadsheet systems), etc. The
term analysis is taken to mean any automated or semi automated procedure
which takes source code and yields insight into its meaning. The term manip-
ulation is taken to mean any automated or semi-automated procedure which
takes and returns source code.

This course encompasses many research areas, namely:

1. Program Refactoring: refactoring is a controlled transformation technique
for improving the design of an existing code base. Its essence is applying
a series of small behaviour-preserving transformations.

2. Program Specialization/Partial Evaluation: Partial evaluation is a transfor-
mation technique in which a program is specialized to a part of the in-
put that is known statically (at specialization time), where the specialized
program may be much faster than the general one.

3. Program Optimization: A program optimization is a transformation that
improves the run-time and/or space performance of a program. Exam-
ples of optimization are program fusion, inlining, constant propagation,
common-subexpression elimination, and dead code elimination.

4. Program Testing: Testing is an important process that is performed to sup-
port quality assurance. These activities consist of designing test cases,
executing the software with those test cases, and examining the results
produced by those executions.

2



5. Program Slicing: program slicing is the computation of the set of source
code program statements, the source program slice, that may affect the
values at some point of interest.

6. Program Debugging and Fault Localization: Program debugging is a me-
thodical process of finding and reducing the number of defects (or faults)
in software. Automatic fault localization techniques aid developers/testers
to pinpoint the root cause of software faults, thereby reducing the debug-
ging effort.

7. Software Metrics: Software metrics are used to indicate the complexity of
a program. Software metrics measure measures program sizes, cohesion,
number of linearly independent paths through a program’s source code,
etc.

8. Document Analysis and Transformation: Techniques for analysis and trans-
formation of documents, described via Extensible Markup Languages
like XML, plays an important role in the exchange of a wide variety of
such documents on the Web.

9. Generative Programming: The purpose of generative programming is to re-
place manual search, transformation/adaptation, and assembly of com-
ponents with the automatic generation of needed components on de-
mand.

10. Reverse Engineering: The goal of reverse engineering is to infer a high-
level specification (like, for example, the program data flow, the GUI be-
havioural model of an interactive application, the program documenta-
tion, etc) from a low-level program.

11. Model-Driven Software Development (MDSD): MDSD aims to guide the de-
velopment of software through models, that is, high level specifications
of the program to be built. Unfortunately, in many cases such models do
not exist, and thus model inference can also be applied, not to support
software development, but to support software maintenance and evolu-
tion.

The course will emphasize the study of the analysis and manipulation tech-
niques themselves, namely:

1. Generalized Top-Down and Bottom-Up Parsing Techniques.

2. Strategic Programming.

3. Bidirectional Transformations.

4. Program Calculation.

5. Attribute Grammars.

3



6. Techniques for Domain Specific Language Embedding.

7. Fault Localization techniques.

8. Program Transformations for embedding Systems.

9. Model-Driven Software Development

It is our goal to address the research challenges in the above mentioned re-
search areas, presenting the state-of-the-art in these fields. Moreover, we will
invite several well-known researchers to give presentations of their work within
the frame of this course (see section Invited Talks).

Finally, we plan to submit the SCAM course for recognition by the CMU Doc-
toral Programme.

Course Context

ACM Computing Classification System subjects covered:

• D. Software / D.2 Software Engineering / D.2.1 Requirements/Specifications

• D. Software / D.2 Software Engineering / D.2.4 Software/Program Veri-
fication

• D. Software / D.2 Software Engineering / D.2.5 Testing and Debugging

• D. Software / D.3 Programming Languages / D.3.3 Language Constructs
and Features

• D. Software / D.3 Programming Languages / D.3.4 Processors

2. Objectives and Learning Outcomes

The goal of this advanced course is to introduce the foundations of program
analysis and transformation in software engineering.

We will present modern approaches to perform program analysis, namely the
use of advanced generic parsing techniques, source code software metrics,
source level testing techniques, and fault localization techniques. We will also
present advanced techniques for program transformation, like the use of strate-
gic programming, bidirectional program transformation techniques, modern
attribute grammar extensions for program transformation, and the use of pro-
gram calculational approaches to define such transformations.

We will study the use of these approaches not only for general purpose lan-
guages, but also for domain specific languages and document specification

4



formalisms. Furthermore, we will discuss source code analysis and transfor-
mation techniques for both general and embedded computing.

At the end of this course, PhD students should be able

• To understand context-free and attribute grammars, and to specify pow-
erful analysis and transformation source code systems within these two
formalisms.

• To use source level software analysis techniques to extract high level ab-
stract models from a (low level) software description, and to assess its
quality;

• To use program refactoring and program slicing techniques to better un-
derstand low and high level source code programs;

• To identify hot-spots and the possible code optimizations and transfor-
mations that can be applied;

• To understand the impact of code transformations and optimizations in
execution time, and in memory and power/energy consumption;

• To recognize mathematical properties in software and to transform and
optimize such "naively" written programs by calculation;

• To advocate (semi-)automated software debugging techniques to quickly
identify faulty software components;

• To be able to create test suites that are particularly suitable for automated
software debugging;

• To acquire knowledge about embedded computing optimizations;

• To define, analyse and transform documents;

• To understand the challenges on developing tools to perform sophisti-
cated code analysis, transformations and optimizations;

3. Course Structure and Contents

This course is structured in four units: the first two present the foundations of
source code analysis and transformations. In unit 3, we will present analysis
techniques for debugging and fault localization in software systems. Finally, in
unit 4, we will study analysis and transformations of source code in the context
of embedded computing.

5



Course unit Lecturer
Source Code: Analysis João Saraiva
Source Code: Manipulation Jácome Cunha
Program Debugging and Fault Localization Rui Maranhão
Source Code Analysis and Transformations for Embedded Computing João Cardoso

Next, we present the content of each of these units.

1. Source Code: Analysis

In general, software analysis extracts properties of software source code.
In this unit we will study the foundations of analysis of source code. We
will present generic language technologies to analyse source code. These
techniques are language paradigm and domain independent: they can be
applied and reused to analyse source code defined in different program-
ming languages (C, Haskell, XML), paradigms (OO, Functional, Impera-
tive), and domains (general purpose or domain specific).

We start by studying powerful generic parsing techniques to rapidly de-
fine a parser/syntactic analyser for source code. We will also present
the attribute grammar formalism in order to define a semantic analyser
for programming languages. Domain specific Languages (DSL) will be
used as case studies. Moreover, we will study the embedding of DSLs
in general purpose languages. The languages for grammar specification
(context-free and attribute grammars) will be used to introduced Embed-
ded DSLs.

Software metrics are a special kind of analysis focused on the structure
of the source code. Typical metrics report provide details on individual
modules and summaries for subsystems. Such metrics are widely used
to judge the quality of source code, enabling a software organization to
more effectively focus its attention on the lower-quality portions of their
portfolio. Software metrics are necessarily computed on the structure of
the source code. This means metrics must be extracted from a parse of
the program’s source code.

We will also study software reverse engineering as yet another analysis
technique which has two goals: first, to identify the system’s components
and their interrelationships; and, second to create representations of the
system at a higher level of abstraction.

Finally, we will study program testing as an important analysis tech-
nique: reverse engineering techniques are used to extract a model of the
underlying source code program, and test cases are (automatically) gen-
erated for the model. Model-based testing techniques are presented to
check whether the model conforms with the program’s implementation.

This unit focuses on the following topics:

6



• Generalized Parsing: Top-Down Generalized Parsing, Functional
Parser Combinators, Bottom-Up Generalized Parsing, Disambigua-
tion Filters, Scannerless Parsing.

• Domain Specific Languages: What is a DSL? When and how to de-
fine DSLs? How to implement DSLs? Building Domain Specific
Processors for DSLs versus Embedded DSLs. A Parser Combinator
Library as an embedding of BNF in a general purpose language.

• Attribute Grammars (AG) and their Extensions: Definition and im-
plementation. Implementation of AGs in a strict / static and dy-
namic / lazy programming language. Program analysis via At-
tribute Grammars. AG-based Program transformation via the Higher-
Order AG extension. The embedding of AG specification language
(ie, a DSL) in Haskell.

• Source Level Software Metrics: Metrics Catalogue (from very sim-
ple Source Lines of Code to more complex measures such as Cy-
clomatic Complexity measurements). Computing metrics for GPLs
and DSLs. Using metrics to detect bad smells. Assessing software
quality via metrics.

• Reverse Engineering: software architecture extraction. Program model
extraction (GUI behavioural models, spreadsheet business logic, pro-
gram dependency graph). Document generation.

• Source Level Software Testing: Test case generation. Model-based
testing. Testing automation. Performance testing for embedding
systems.

• Source Code Analysis for Embedded Computing. Embedded Com-
puting Idiosyncrasies. Computing Engines used in Embedded Sys-
tems. Profiling, Performance Analysis and Amdahl’s Law. Intro-
duction to Power Dissipation and Energy Consumption.

2. Source Code: Manipulation

Program Analysis reduces a program to one aspect such as its control-
flow. Thus, analysis can be considered a transformation to a sub-language.
In this unit we will present generic techniques and tools for program
transformation.

One of the aims of a general framework for program transformation is
to define transformations that are reusable across as wide a range of lan-
guages as possible. Thus, we present strategic programming as a generic
language-based technique for source code software transformation. We
will also study bidirectional program transformations. A Bidirectional
transformation defines two program transformations: one from a source
program to a target program, and a second one from the target to the
source program. A bidirectional transformation system allows users to

7



edit/update both the source and the target programs: the two programs
(source and target) are automatically synchronized after the user update.

Many software programs conform to some specification, some model. If
such model exists, several model-driven techniques can be applied. One
of the most important is the evolution of software guided by such mod-
els. Usually it is easier to evolve the model, since it is in general easier to
understand, and have the instances, the programs, co-evolved automat-
ically. We will study techniques that allow such automatic evolution of
software. Moreover, in some particular cases it is more feasible to evolve
the program and have the model automatically co-evolved. We will also
study such techniques.

Unfortunately, not always a program is accompanied by a specification.
In these scenarios the perfect solution is to automatically infer such a
model from a program or a set of programs. In this course we will study
generic techniques to achieve this and apply them to a case study.

In this course we present program refactoring as an important source
code transformation: a technique for changing the structure of a program
without changing its behaviour/semantics.

We will also study partial evaluation or program specialization as an im-
portant program optimization technique: program are specialized to a
part of the input that is known statically. Two real examples will be stud-
ied: the specialization of the acceptance functions for non-deterministic
finite automata and for table-driven top-down parsers.

In order to analyse/understand large software systems, it is convenient
to focus on smaller parts of the system. Program slicing is a technique
that allows us to slice out fragments of a larger software system that de-
serve our attention. We will present slicing techniques (backward and
forward slicings) as algorithms that work on source code program de-
pendency graphs.

Finally, we will present document analysis and transformation techniques
based on the widely used extensible markup languages. We will relate
these document techniques to context-free grammars and strategic pro-
gramming. As case studies, we will evaluate code transformations with
embedded applications running on mobile devices.

The unit is structured into the following topics:

• Strategic Programming: Foundations. Rewriting systems. Strate-
gic Combinators. Strategies across programming paradigms: func-
tional, OO and imperative incarnations. Strategic-based source code
transformation systems: TOM and RASCAL systems.

• Document Definition and Transformation: Extensible markup lan-
guages. The XML Language. XML schema. XML Schema versus
Context-Free Grammars. Document Transformation via XSLT. XSLT
versus Strategic Combinators.

8



• Bidirectional Program Transformation: Backward and forward trans-
formations. Deriving backward from forward transformation defi-
nition. Bidirectional attribute grammars.

• Program Refactoring: Source code refactorings. Refactorings cata-
logues. Bad smell elimination. Tool support for refactoring (The
Hare refactorer)

• Program Specialization/Partial Evaluation: Foundations. Futamura
projections. Partial evaluation as an optimization transformation.
Study of two case studies.

• Program Slicing: Program dependency graph. Static versus dy-
namic slicing. Slicing Criteria. Forward and backward slicing, and
chopping. Source code slicing systems: the CodeSurfer and the
GuiSurfer systems.

3. Program Debugging and Fault Localization

Software reliability/quality can generally be improved through exten-
sive testing and debugging, but this is often in conflict with market con-
ditions: software cannot be tested exhaustively, and of the bugs that are
found, only those with the highest impact on the user-perceived relia-
bility can be solved before the release. In this typical scenario, testing
reveals more bugs than can be solved, and debugging is the bottleneck
for improving software reliability/quality. Automated debugging tech-
niques can help to reduce this bottleneck. These techniques give a di-
agnosis for failures that are detected during the execution of a program,
which can help programmers to locate their root causes, and thus to re-
duce the effort spent on manual debugging.

The unit is structured into the following topics:

• Test case generation: theory, techniques and tools.
• Software evolution/transformation and semi-automatic test case test

co-adpatation.
• (Semi-) automatic fault localization.
• Devise proper test suites which help in the subsequent debugging

phase.
• Introducing to test sequencing for improving the time spent on de-

bugging.

4. Source Code Analysis and Transformations for Embedded Computing

Code transformations are of paramount importance in embedded com-
puting. They may reduce execution time, power dissipation, and/or en-
ergy consumption.

9



This module will focus on the analysis and identification of code opti-
mization techniques best suited to achieve reductions related to those as-
pects on typical applications.

Finally, challenges on the development of code transformation tools for
embedded systems will be presented and possible solutions discussed.

• Embedded Computing Idiosyncrasies.

• Computing Engines used in Embedded Systems.

• Profiling, Performance Analysis and Amdahl’s Law.

• Introduction to Power Dissipation and Energy Consumption.

• Source Code Transformations and Optimizations.

• Challenges regarding Tools for Code Transformations: Examples
and Case Studies.

4. Teaching Methods and Student Assessment

This course will consist of theoretical and practical components.

In the theoretical component, a set of seminars will be delivered by the lectur-
ing team, invited speakers, and the students themselves.

• The basic and advanced contents of this course will be presented by the
lecturing team; We will be using the proceedings of the series of Ph.D.
summer schools on Generative and Transformation Techniques in Software
Engineering (GTTSE) as the reading material for the classes (see Bibliog-
raphy section). The proceedings of the first three editions include several
long and short tutorials (concretely 22 long tutorials and 19 short tutori-
als), written by well-known researchers, which cover most of the topics
in the course. The members of the lecturing team are involved in the se-
ries of GTTSE Ph.D. schools as proceedings editors, local organizers and
tutorialists.

• Advanced contents on specific topics will be presented by visiting re-
searchers (see section Invited Tutorials)

• Students will give one presentation of proposed research papers. The
presentation will follow a standard conference talk model. The research
papers will be proposed by the lecturing team, and they consist of a se-
lection of recently published papers in conferences and journals in the
SCAM area (namely, PLDI, TOPLAS, SCAM, GPCE, and SLE).

The practical component consists of the development of an individual project.
This project requires the use of a specific software system for the analysis and

10



transformation of source code. The students are also expected to give a presen-
tation, in the form of a tool demo, of the software system they decide to use.
They are also supposed to write a report of the project as a research paper.

Invited Tutorials

We plan to have a series of tutorials given by researchers working in the field
of SCAM. In the next scholar year we plan to have the following tutorials:

• João Paulo Fernandes is a Professor at the Informatics Department, Uni-
versity of Beira Interior, Portugal. João Fernandes has contributed mainly
to the research area of program analysis, manipulation and transforma-
tion, specially under calculational form, having published several papers
in top conferences in this field. Thus, he will give a tutorial to students
on formal software analysis and manipulation.

• Eric Van Wyk is an Associate Professor at Univ. Minnesota, USA. Prof.
Eric Van Wyk visited UMinho in the scholar year 2010-2011 (from Octo-
ber 2010 till June 2011) in the context of a sabbatical leave. As one result
of this sabbatical, we have a research project funded bu FLAD/NSF that
includes visits between our two sites. In this context, Eric will give a
tutorial in the unit "Source Code: Transformations".

• Alberto Pardo is an Associate Professor at the Computing Science De-
partment (InCo) of the Engineering School, Universidad de la República,
Montevideo, Uruguay and we will be visiting UMinho as consultant of
the FCT funded SSaaPP research project. Like in the scholar year 2010-
2011 of SCAM, he will give a tutorial in the unit "Rigorous Approaches to
Program Analysis and Transformations", being this a research area that
Alberto Pardo has already significantly contributed to, including with
some of the lecturing team members.

• Janis Voigltlander is a Professor at Bonn University, Germany, conduct-
ing research on parametricity results (also called free theorems) for poly-
morphically typed languages. These results are used, for example, to es-
tablish formally the correctness of program transformations. In the con-
text of the project Strictification of Circular Programs, (FCT/DAAD bilat-
eral agreement 2010-2011), one visit is scheduled to UMinho, where Janis
Voigtlander will give a tutorial in the unit "Rigorous Approaches to Pro-
gram Analysis and Transformations", like in the previous instance of this
course.

11



Student Assessment

During the this course the students will have to give a research talk, to develop
a research project, to give a tool demo talk presenting the software system they
adopt, and finally to write the project report as a scientific paper. Thus, the
student will be assessed through these four activities.

5. Basic Bibliographic References

• Generative and Transformation Techniques in Software Engineering I, II, III,
IV, Ralf Laemmel, Joost Visser and João Saraiva editors, LNCS Tutorials,
proceedings of the summer schools GTTSE’05, GTTSE’07, GTTSE’09 and
GTTSE’11, Springer.

• Compilation Techniques for Reconfigurable Architectures, João Cardoso and
Pedro Diniz, Springer Publishing Company, Incorporated, 2008.

• Software Product Lines: Practices and Patterns, Paul Clements and Linda
Northrop, Addison-Wesley, August 2001.

• Generative Programming - Methods, Tools, and Applications, Krzysztof Czar-
necki and Ulrich W. Eisenecker, Addison-Wesley, June 2000.

• Partial Evaluation and Automatic Program Generation, N.D. Jones, C.K. Go-
mard, and P. Sestoft, Prentice Hall International, June 1993

• The Fun of Programming, Jeremy Gibbons and Oege de Moor, editors. Cor-
nerstones in Computing. Palgrave, 2003.

• Domain Specific Languages, Martin Fowler, Addison-Wesley Professional,
September, 2010 (Estimated), already available at safari books online)

• Refactoring: Improving the Design of Existing Code, Martin Fowler, Kent
Beck, John Brant, William Opdyke, Don Roberts, Addison-Wesley, 2000.

12



B. Lecturing Team

1. Team Presentation

This course is supported by a team involving researchers form both the Uni-
versity of Minho, School of Engineering (Jácome Cunha, and João Saraiva), and
the University of Porto, FEUP (João Cardoso, and Rui Maranhão).

All team members are working, and have worked actively in the past few
years, on topics that are directly related to the subjects covered by this course,
as detailed below.

2. Coordinator

The coordinator of the unit is João Saraiva.

3. Short Presentation of Team Members

In the sequel we introduce a brief presentation of each team member, which
includes, for each of them, up to 5 key publications related to the scientific area
in which this course is proposed.

João Saraiva is auxiliar professor at the Department of Informatics, Univer-
sidade do Minho, and a researcher member of HASLab/INESC TEC. He ob-
tained a MSc degree from University do Minho in 1993 and a Ph.D. degree
in Computer Science from Utrecht University in 1999. His main research con-
tributions have been in the field of program language design and implemen-
tation and in program analysis and transformation. He counts with over 50
international publications in this area and he has served in over 25 programme
committees of international events.

He has experience in participating, coordinating and evaluating research projects
in this area, both at national level with projects funded by FCT (projects: PURe,
IVY, AMADEUS, CROSS, and SSaaPP) and at international level with projects:
"Embedded Attribute Grammars"funded by EPSRC - The Engineering and Phys-
ical Sciences Research Council, UK, contract GR/S02266/01 (project developed
at Oxford Computing Laboratory with Prof. Dr. Oege de Moor), and "Ap-
plied Semantics II"an European Union Thematic Network, EU contract IST-
2001-38957 (where the he was the site coordinator). He was in the evalua-
tion committees of the grant agencies: ANII Agencia Nacional de Investigación
e Innovación, Uruguay (Fondo Clemente Estable 2007 (FCE 2007), and NWO -

13



Netherlands Organisation for Scientific Research (Physical Sciences division of
the Free Competition, in astronomy, computer science or mathematics, 2009)
and the Austrian Science Fund (FWF).

João Saraiva is one of the founders of the successful series of summer schools
on Generative and Transformational Techniques in Software Engineering (GTTSE),
organized in 2005, 2007, 2009, (volumes 4143, 5235 and 6491 of LNCS by Springer-
Verlag) and 2011 (LNCS to appear), in Braga. He was the organizing chair of
ETAPS’07, The European Joint Conferences on Theory and Practice of Soft-
ware, organized in Braga in 2007.

Key Publications:

• Jácome Cunha, João Paulo Fernandes, Jorge Mendes, João Saraiva, MD-
Sheet: A Framework for Model-driven Spreadsheet Engineering, In the Pro-
ceedings of the 34th International Conference on Software Engineering
(ICSE’ 12), Formal Demonstration, Zurich, Switzerland, pages 1412-1415,
June 2012.

• Jácome Cunha, Joost Visser,Tiago Alves, João Saraiva, Type-safe Evolu-
tion of Spreadsheets, In FASE ’11: Proceedings of the International Confer-
ence on Fundamental Approaches to Software Engineering: Held as Part
of the Joint European Conferences on Theory and Practice of Software,
ETAPS 2011, Berlin, Heidelberg, 2011. Springer-Verlag. pages 186-201.

• J.C. Silva, C. Silva, R. Gonçalo, João Saraiva, J.C. Campos, The GUISurfer
tool: towards a language independent approach to reverse engineering GUI code,
ACM SIGCHI Symposium on Engineering Interactive Computing Sys-
tems (EICS 2010), June 2010.

• Jácome Cunha, João Saraiva and Joost Visser, Discovery-based Edit Assis-
tance for Spreadsheets, 25th IEEE Symposium on Visual Languages and
Human-Centric Computing (VL-HCC’09), Corvallis, Oregon, September
2009, IEEE Press.

• Jácome Cunha, João Saraiva and Joost Visser, From Spreadsheets to Rela-
tional Databases and Back, ACM SIGPLAN Symposium on Partial Evalua-
tion and Program Manipulation (PEPM 2009), Savannah, Georgia, USA,
January 19-20, 2009, ACM Press.

• Don S. Batory, Maider Azanza, João Saraiva, The Objects and Arrows of
Computational Design, 11th International Conference on Model Driven
Engineering Languages and Systems (MoDELS 2008), Toulouse, France,
September 2008, volume 5301 of LNCS, pag. 1-20, Springer.

Funded Projects (last 5 years):

14



• FATBIT: Foundations, Applications and Tools for Bidirectional Transformation,
under FCT contract FCOMP-01-0124-FEDER-020532. 2012-2014.

• Strictification of Circular Programs, FCT/DAAD bilateral agreement 2010-
2011. (Principal Investigator, recommended for funding)

• SSaaPP: SpreadSheets as a Programming Paradigm,
under FCT contract PTDC/EIA-CCO/108613/2008. 2010-2013. (Princi-
pal Investigator)

• CROSS: - An Infrastructure for Certification and Re-engineering of Open Source
Software, under FCT contract PTDC/EIA-CCO/108995/2008. 2010-2013.

• AMADEUS - Aspects and Compiler Optimizations for Matlab System Devel-
opment, under FCT contract PTDC/EIA/70271/2006. 2008-2010.

• IVY - A model-based usability analysis environment, under FCT contract
POSC/EIA/56646/2004. 2004-2007.

• LerNet - Language Engineering and Rigourous Software Development, Euro-
pean Comission ALFA Programme, 2006-2009.

• PURe - Program Understanding and Re-engineering: Calculi and Application,
under FCT contract POSI/CHS/44304/2002. 2003-2006.

• APPSEM - Applied Semantics II, European Union - Thematic Networks
Programme, under EU contract IST-2001-38957, 2003-2006. (Site Coordi-
nator)

Supervision of PhD projects:

• Jorge Mendes, Evolution of Model-Driven Spreadsheets in a Collaborative En-
vironment, University of Minho, since September 2012. (PhD supervisor)

• Pedro Martins, Embedded Attribute Grammars, University of Minho, since
September 2010. (PhD supervisor)

• Jácome Cunha, Foundations of Spreadsheets, FCT grant SFRH/BD/30231/2006,
University of Minho, awarded in March 2011. (PhD supervisor)

• João Carlos Cardoso Silva, Formal Methods and Reverse Engineering Applied
to Interactive Systems, FCT grant SFRH/BD/30729/2006, University of
Minho, awarded in December 2010. (PhD supervisor)

• João Paulo Fernandes, Design, Implementation and Calculation of Circular
Programs, FCT grant SFRH/BD/19186/2004, University of Minho, awarded
in March 2009. (PhD supervisor)

15



• Fábio Tirelo, Semântica Multidimensional de Linguagens de Programação, De-
partamento de Informática, Universidade do Federal de Minas Gerais,
Belo Horizonte, Brazil, awarded in March 2009. (PhD co-supervisor)

Jácome Cunha received a licenciatura (5 years degree) in Mathematics and
Computer Science from the University of Minho (Portugal) in 2006. He ob-
tained his PhD degree in Computer Science from the same university in 2011.
Currently, he is a post-doc fellow at HASLab/INESC TEC, University of Minho
and Oregon State University (USA). Jácome Cunha is also an Adjunct Profes-
sor at Polytechnic Institute of Porto, School of Technology and Management
(Portugal).

His research is mainly focused on programming languages and software engi-
neering, and in improving the use of spreadsheets through characteristics from
modern programming languages and software engineering techniques, having
published several papers in top conferences in these fields.

Jácome Cunha was a member of the research project “Program Understand-
ing and Re-engineering: Calculi and Applications” (PURe). Currently, he his
member of the research team of the projects “SpreadSheets As A Programming
Paradigm” (SSaaPP) and “Foundations, Applications and Tools for Bidirec-
tional Transformation” (FATBIT). The three projects were funded by the Por-
tuguese Science Foundation (FCT).

He was member of the organizing committee of the Summer School on Gener-
ative and Transformational Techniques in Software Engineering (GTTSE ’11).
He has also served as an external Program Committee member of important
conferences within the scope of this course, namely the HASKELL ’09, SLE ’11,
PEPM ’12, LDTA ’12, and ECMFA ’13. Moreover, he serves as a reviewer for
the Journal of Visual Languages and Computing and for the Data & Knowl-
edge Engineering (DKE) Journal.

Key Publications:
• Jácome Cunha, João Paulo Fernandes, Jorge Mendes, João Saraiva, MD-

Sheet: A Framework for Model-driven Spreadsheet Engineering, In the Pro-
ceedings of the 34th International Conference on Software Engineering
(ICSE’ 12), Formal Demonstration, Zurich, Switzerland, pages 1412-1415,
June 2012.

• Jácome Cunha, João Paulo Fernandes, Jorge Mendes, Hugo Pacheco, João
Saraiva, Bidirectional Transformation of Model-Driven Spreadsheets, In the
5th International Conference on Model Transformation (ICMT ’12), Czech
Republic, Prague, pages 105-120, 28-29 May 2012.

16



• Jácome Cunha, Model-based Spreadsheet Engineering, PhD thesis, defended
in March, 2011. (The thesis is available as a book, ISBN 978-3-8484-3036-9,
published by LAP LAMBERT Academic Publishing)

• Jácome Cunha, Joost Visser,Tiago Alves, João Saraiva, Type-safe Evolu-
tion of Spreadsheets, In FASE ’11: Proceedings of the International Confer-
ence on Fundamental Approaches to Software Engineering: Held as Part
of the Joint European Conferences on Theory and Practice of Software,
ETAPS 2011, Berlin, Heidelberg, 2011. Springer-Verlag. pages 186-201.

• Jácome Cunha, João Saraiva, Joost Visser, From Spreadsheets to Relational
Databases and Back, PEPM ’09 Proceedings of the 2009 ACM SIGPLAN
workshop on Partial evaluation and program manipulation, 2009.

Funded Projects (last 5 years):

• FATBIT: Foundations, Applications and Tools for Bidirectional Transformation,
under FCT contract FCOMP-01-0124-FEDER-020532. 2012-2014.

• SSaaPP: SpreadSheets as a Programming Paradigm,
under FCT contract PTDC/EIA-CCO/108613/2008. 2010-2013.

• PURe - Program Understanding and Re-engineering: Calculi and Application,
under FCT contract POSI/CHS/44304/2002. 2003-2006.

Supervision of PhD projects:

• Jorge Mendes, Evolution of Model-Driven Spreadsheets in a Collaborative En-
vironment, University of Minho, since September 2012. (co-supervisor)

João Cardoso received a 5-year Electronics Engineering from the University
of Aveiro in 1993, and an MSc and a PhD degree in Electrical and Computer
Engineering from the IST/UTL (Technical University of Lisbon), Lisbon, Por-
tugal in 1997 and 2001, respectively. He is currently Associate Professor with
tenure at the Department of Informatics Engineering, Faculty of Engineering
of the University of Porto. Before, he was with the IST/UTL (2006-2008), a se-
nior researcher at INESC-ID (2001-2009), and with the University of Algarve
(1993-2006). In 2001/2002, he worked for PACT XPP Technologies, Inc., Mu-
nich, Germany.

He has participated in the organization of a number of conferences (e.g., RAW’10,
FPL’03, ’07, ’08, ARC’05, ARC’06, ’07) and he serves as a Program Committee

17



member for various international conferences (e.g., IEEE FPT, IEEE SASP, FPL,
IC-SAMOS, ACM SAC-EMBS, ARC). He serves(ed) as reviewer for various
international scientific journals (e.g., IEEE Transactions on Computers, IEEE
Transactions on VLSI, Elsevier Microprocessors and Microsystems, Elsevier
Journal of Systems Architecture, IEEE Computer Magazine, IEEE Transactions
on Education, Elsevier International Journal on Computers and Electrical En-
gineering, IEEE Transactions on Industrial Electronics, Elsevier Parallel Com-
puting, IEEE Design & Test of Computers).

He is co-author of a Springer book and co-editor of two Springer LNCS vol-
umes. He has (co-)authored over 80 scientific publications (including jour-
nal/conference papers and patents) on subjects related to compilers, embed-
ded systems, and reconfigurable computing. He is a member of IEEE, IEEE
Computer Society and a senior member of ACM.

Key Publications:

• Carlos Morra, João M. P. Cardoso, João Bispo, and Juergen Becker, Re-
targeting, Evaluating, and Generating Reconfigurable Array-Based Architec-
tures, in 6th IEEE Symposium on Application Specific Processors (SASP
2008), 8-9 June 2008, Anaheim Convention Center, Anaheim CA, USA,
pp. 34–41.

• João M. P. Cardoso, Dynamic Loop Pipelining in Data-Driven Architectures,
in Proc. of the ACM International Conference on Computing Frontiers
(CF’05), Ischia, Italy, 4-6 May 2005, ACM Press, pp. 106-115.

• Rui Rodrigues, João M. P. Cardoso, and Pedro C. Diniz, A Data-Driven
Approach for Pipelining Sequences of Data-Dependent Loops, in 15th Annual
IEEE Symposium on Field Programmable Custom Computing Machines
(FCCM’07), Napa Valley, CA, USA, April 23 - April 25, 2007, IEEE Com-
puter Society Press.

• João M. P. Cardoso, and Markus Weinhardt, From C Programs to the Configure-
Execute Model, in Proc. of the Design, Automation and Test in Europe
Conference (DATE’03), Munich, Germany, March 3-7, 2003, IEEE Com-
puter Society Press, pp. 576-581.

• João M. P. Cardoso, On Combining Temporal Partitioning and Sharing of
Functional Units in Compilation for Reconfigurable Architectures, in IEEE Trans-
actions on Computers, Vol. 52, No. 10, October 2003, pp. 1362-1375.

Funded Projects (last 5 years):

• Member of the European Network of Excellence on High Performance
and Embedded Architecture and Compilation (HiPEAC), http://www.hipeac.net/

18



• REFLECT: Rendering FPGAs to Multi-Core Embedded Computing, Coordi-
nator of WP4 and leader of FEUP partnership, Project Number 248976,
FP7-ICT-2009-4, Activity: ICT-2009.3.6 Computing Systems. Duration in
months: 36 (start: January 2010).

• “AMADEUS: Aspects and Compiler Optimizations for Matlab System Devel-
opment”, Funded by FCT, PTDC/EIA/70271/2006. (Project coordinator).

• “COBAYA: closing the compilation gap between algorithms and coarse-grained
reconfigurable array architectures”; Funded by FCT, PTDC/EEA-ELC/70272/2006.
(Project coordinator)

Supervision of PhD projects:

• João Cardoso supervised 3 PhD projects and co-supervisor one PhD project.

Rui Maranhão (publishes as Rui Abreu) graduated in Systems and Computer
Engineering from University of Minho, Portugal, carrying out his graduation
thesis project at Siemens S.A., Portugal. Between September 2002 and February
2003, Rui followed courses of the Software Technology Master Course at Uni-
versity of Utrecht, the Netherlands, as an Erasmus Exchage Student. He was
an intern researcher at Philips Research Labs, the Netherlands, between Octo-
ber 2004 and June 2005. He received his Ph.D. degree from the Delft University
of Technology, the Netherlands, in November 2009. During his PhD studies
period (2005-2009) he was also a research associate at the Embedded Systems
Institute, the Netherlands. Currently, he is an assistant professor at the Faculty
of Engineering of University of Porto, Portugal.

Key Publications:

• R. Abreu, P.Zoeteweij, and A.J.C. van Gemund, Spectrum-based Multi-
ple Fault Localization. In Proceedings of the 24th International Confer-
ence on Automated Software Engeneering (ASE’09), pp. 88–99, Auck-
land, New Zealand, November 2009. IEEE Society.

• R. Abreu, P. Zoeteweij, R. Golsteijn, and A.J.C. van Gemund, A Practical
Evaluation of Spectrum-based Fault Localization. Journal of Systems and
Software (JSS), Elsevier, 2009.

• R. Abreu, P. Zoeteweij, and A.J.C. van Gemund, A New Bayesian Ap-
proach to Multiple Intermittent Fault Diagnosis. In Proceedings of the
21st International Joint Conference on Artifical Intelligence (IJCAI’09),
pp. 653–658, Pasadena, CA, USA, July 2009. AAAI Press.

19



• R. Abreu, P. Zoeteweij, and A.J.C. van Gemund, On the Accuracy of
Spectrum-based Fault Localization. In Proceedings of the Testing: Academia
and Industry Conference - Practice And Research Techniques (TAIC PART’07),
pp. 89–98, Windsor, United Kingdom, September 2007. IEEE Computer
Society.

• T. Janssen, R. Abreu, and A.J.C. van Gemund, Zoltar: A Toolset for Au-
tomatic Fault Localization. In Proceedings of the 24th International Con-
ference on Automated Software Engeneering (ASE’09) - Tools Track, pp.
662–664, Auckland, New Zealand, November 2009. IEEE Computer So-
ciety. (Best Demo Award)

Funded Projects (last 5 years):

• SSaaPP: SpreadSheets as a Programming Paradigm, under FCT contract PTDC/EIA-
CCO/108613/2008. 2010-2013.

• TRADER: Systems Reliability, Embedded Systems Institute, the Nether-
lands.

20


